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Abstract

In the community of computer vision, style transfer
usually refers to the extraction of texture information
from the source image and then transfer and synthe-
sis into the target image. However, the existing style
transfer methods ignore information such as the hier-
archical structure of the input image, and consider the
entire parts of input image belong to the same dis-
tribution. The results show that a trained generative
adversarial network can only convert the entire image
from one distribution to another specific distribution,
which cannot produce satisfactory results for images
with complex hierarchies and structures.

In this paper, we propose a new method for specific
style transfer by combining different semantic parts,
such as foreground characters and background content,
with different representation weights, which is of great
significance in the fields of painting and cartoon gen-
eration. We assist in training adversarial networks by
adding a pre-trained semantic segmentation network,
and control and adjust our framework by observing dif-
ferent semantic parts of the generated image and com-
paring their distribution with the various distributions
we hope to obtain.

Qualitative comparison and quantitative analysis show
that our method significantly improves the sense of hi-
erarchy of the generated image, and different parts of
the image have different textures, structures and color
distributions. For example, our method makes the
texture of the generated foreground characters more
dense, while the texture of the background content be-
comes sparse, which makes the generated image look
better than the state-of-the-art methods. Finally, the
ablation study proved the impact of each component
in our framework.

The code will be made publicly available at
https://github.com/JB-Bai/Semantic-aware-Cartoon-
Style-Transfer.

1. Introduction
In the community of computer vision, style transfer
usually refers to the extraction of texture style infor-
mation (i.e., painting) from the source image and then
transfer and synthesis into a stylized output with the
content information (i.e., an arbitrary portrait or land-
scape) of the target image.

In the past, re-drawing an image in a particular style
requires a well-trained artist and lots of time. Since
the mid-1990s, the art theories behind the appealing
artworks have been attracting the attention of not
only the artists but many computer science researchers.
There are plenty of studies and techniques exploring
how to automatically turn images into synthetic art-
works. As a result, style transfer is usually studied
as a generalised solution to these problems. However,
the common limitation of traditional computer vision
methods is that they only use low-level image features
(i.e., a histogram or feature matching) and often fail to
capture image structures effectively.

Recently, inspired by the power of Convolutional Neu-
ral Networks (CNNs)[11], Gatys et al. [5] first studied
how to use a CNN to reproduce famous painting styles
on natural images. They proposed to model the con-
tent of one image as the feature responses from a pre-
trained CNN, and further model the style of an artwork
as the summary feature statistics. Their experimental
results demonstrated that a CNN is capable of extract-
ing content information from an arbitrary photograph
and style information from a well-known artwork.

Since the algorithm of Gatys et al. does not have any
explicit restrictions on the type of style images and
also does not need ground truth results for training,
it breaks the constraints of previous approaches. The
work of Gatys et al. opened up a new field called Neu-
ral Style Transfer (NST), which is the process of using
Convolutional Neural Network to render a content im-
age in different styles.

However, style is an abstract concept and is formed by
a complex combination of low-level features and high-
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Figure 1. Semantic mismatch of style transfer result. the images from left to right are the content image, the style image
and the result, respectively.

level semantics. For instance, mapping the texture of
a brick to an apple is unnatural in terms of semantics.
Consequently, the results of a style transfer look unre-
alistic. Meanwhile, the texture of a brick when mapped
onto a wall is natural and acceptable from the per-
spective of an ordinary observer. However, traditional
style transfer methods exhibit a apparently semantic
mismatch. This yields stylized images that look very
different from the users’ expectations. Fig. 1 shows an
example of a failure caused by a semantic mismatch.
Although the general style of the source was adequately
reflected in the target, its visual effect was unrealistic
because the styles were transferred from different se-
mantic regions. For example, the road region received
portions of the sky color, which is a consequence of
utilizing spatial-invariant feature statistics, such as a
Gram matrix, as described by Li et al. [12]. Because a
Gram matrix is used to model spatially invariant char-
acteristics extracted from a CNN, it can represent the
local style of a source image. Meanwhile, the geomet-
rical content or spatial semantics are ignored.

Cartoon is a popular art form that has been widely
applied in diverse scenes. Modern cartoon animation
workflows allow artists to use a variety of sources to cre-
ate content. Some famous products have been created
by turning real-world photography into usable cartoon
scene materials, where the process is called image car-
toonization.

Generative Adversarial Network(GAN)[6] is a state-of-
the-art generative model that can generate data with
the same distribution of input data by solving a min-
max problem between a generator network and a dis-
criminator network. It is powerful in image synthesis
by forcing the generated images to be indistinguishable
from real images. GAN has been widely used in con-
ditional image generation tasks, such as style transfer
[5], image cartoonization [4], etc.

In this study, we focus on resolving a semantic mis-
match in specifical style transfer —- image cartooniza-
tion, which meansbetween a source (style) image and
a target (content) image. In our method, we adopt
adversarial training architecture and use two discrim-
inators to enforce the generator network to synthesize
images with the same distribution as the target do-
main. Besides, we adapt an existing semantic segmen-
tation method to extract semantically meaningful re-
gions from both the output images and the style (car-
toon) images. To conclude, our contributions are as
follows:

• We propose a semantic module for describing var-
ious semantic regions and matching these regions
in different image sets. The proposed semantic
loss can effectively release the mismatching issues.

• A GAN-based image cartoonization framework is
optimized with the guide of semantic module for
different semantic regions.

• Extensive experiments have been conducted to
show that our method can generate high-quality
cartoonized images. Our method outperforms
existing methods in qualitative comparison and
quantitative comparison.

2. Related Work
2.1. Style Transfer

Inspired by the power of Convolutional Neural Net-
works (CNNs), Gatys et al. [5] first proposed to exploit
CNN feature activations to recombine the content of a
given photo and the style of famous artworks. The
key idea behind their algorithm is to iteratively opti-
mize an image with the objective of matching desired
CNN feature distributions, which involves both the im-
age’s content information and artwork’s style informa-
tion. Their proposed algorithm successfully produces



Figure 2. An overview of our proposed network.

stylised images with the appearance of a given artwork.

The first model-optimization-based neural style trans-
fer algorithm is proposed by Johnson et al. [10]. The
main idea of this work is to pre-train a feed-forward
style-specific network and produce a stylized result
with a single forward pass at testing stage. Johnson et
al. [10]’s design roughly follows the network proposed
by Radford et al. [15] but with residual blocks as well
as fractionally strided convolutions.

The algorithms of Johnson et al. [10] achieves a real-
time style transfer. However, His algorithm design ba-
sically follows the algorithm of Gatys et al. [5], which
makes them suffer from the same aforementioned issues
as Gatys et al. [5]’s algorithm (e.g., a lack of considera-
tion in the coherence of details and depth information).

2.2. Generative Adversial Network

Different from other generative models, e.g. varia-
tional auto-encoder, generative adversarial networks is
a more powerful and excellence framework to synthe-
sis a sharp, realistic and photographic image result.
GAN [6] is proposed by Goodfellow to introduce an
adversarial process between the two related neural net-
works, e.g. generator and discriminator, which can be
treated as a minimax two-player game which reaching
the Nash balance for generator and discriminator. Re-
cently, with its rapid development and optimization,
GANs [22, 9, 2] achieve a state of art in style transfer,
image painting, etc. For instance, Pix2pix [9] learns
image to image translation task in a supervised man-
ner. It combines an adversarial loss with L1 loss, thus

requires paired data samples. To alleviate the problem
of obtaining data pairs, CycleGAN [22] preserve key
attributes between the input and the translated image
by using a cycle consistency loss.

Besides, CartoonGAN [4] is designed for image car-
toonization, in which a GAN framework with a novel
edge loss is proposed, and achieves good results in cer-
tain cases. But using a black-box model to directly
fit the training data decreased its generality and styl-
ization quality, causing bad cases in some situations.
To address the above-mentioned problems, Wang et
al. [19] made extensive observations on human painting
behaviors and cartoon images of different styles, then
propose to decompose images into several cartoon rep-
resentations, including the surface representation, the
structure representation, and the texture representa-
tion. Users can adjust the style of model output by
balancing the weight of each representation. In order
to make the image color reconstruction better, Ani-
meGAN [3] first convert the image color in RGB format
to the YUV format to build the color reconstruction
loss.

3. Proposed Method
The architecture of our image cartoonization frame-
work is shown in Fig. 2. The backbone image car-
toonization (specifical style transfer) model is a GAN
framework comprises a generator G and couples of dis-
criminators Di, with the semantic module to extract
semantic regions in the middle. Pre-trained VGG net-
work [17] is used to extract high-level features and to



Figure 3. Generator Network.

Figure 4. Discriminator Network.

impose spatial constrain on global contents between
extracted structure representations and outputs, and
also between input photos and outputs. Pre-trained
segmentation models [21] are also used as the seman-
tic module to exact different semantic regions. Weight
for each component can be adjusted in the loss func-
tion, which allows users to control the output style and
adapt the model to diverse use cases.

3.1. Network Architecture

We show the architecture of generator network and dis-
criminator network in the above Fig. 3 and Fig. 4.

The generator network is a fully-convolutional U-Net-
like [16] network. We use convolution layers with stride
2 for down-sample and bilinear interpolation layers for
up-sample to avoid checkerboard artifacts. The net-
work consists of only three kind of layers: convolution,
Leaky ReLU (LReLU) [13] and bilinear resize layers.
This enables it to be easily embedded in edge devices
such as mobile phones.

PatchGAN [9] is adapted in the discriminator network,
where the last layer is a convolution layer. Each pixel
in the output feature map correspond to a patch in
the input image, with the patch size equals to the per-
ceptive field, and is used to judge whether the patch
belongs to cartoon images or generated images. The
PatchGAN enhances the discriminative ability on de-
tails and accelerates training. Spectral normalization
[14] is placed after every convolution layer (except the
last one) to enforce Lipschitz constrain on the network

and stabilize training.

3.2. Loss Function

Our loss fucntion (1) can be formulated as weighted
sum of multiple existing losses.

Ltotal =

N∑
i=1

(WN ∗ LstyleN )

+Wtv ∗ Ltv

+Wcontent ∗ Lcontent

+Wsemantic ∗ Lsemantic

(1)

3.2.1 Content Loss

The content loss Lcontent is used to ensure that the
generated result and the input image are semantically
invariant, and the sparsity of L1 norm allows for local
features to be cartoonized. By calculating the input
image and the generated result on a pre-trained VGG
feature space, we can get

Lcontent = ||V GGn(G(Ip))− V GGn(Ip)|| (2)

Ip represents input image and V GGn represents feature
extracted from the n-th layer on the VGG network.

3.2.2 Semantic Loss

The semantic loss LSemantic is used to ensure that the
generated result and the input image have same se-
mantic location distribution. By calculating the input
image and the generated result on a pre-trained seman-
tic segmentation network [21], we can get

Lsemantic = ||UNet(G(Ip))− UNetn(Ip)|| (3)

Ip represents input image and UNet represents seman-
tic location information extracted from the a semantic
segmentation network, i.e, a pre-trained UNet network.

3.2.3 Style Loss

The style loss Lstyle includes two parts, surface loss
and texture loss.

Lstyle = λ1 ∗ Lsurface + λ2 ∗ Ltexture (4)

Cartoon painting style usually have smooth surfaces
similar to cartoon images. To smooth images and
meanwhile keep the global semantic structure, a differ-
entiable guided filter [20] is adopted for edge-preserving



filtering. Denoted as Fdgf , it takes an image I as in-
put and itself as guide map, returns extracted surface
representation Fdgf (I, I) with textures and details re-
moved.

A discriminator Ds is introduced to judge whether
model outputs and reference cartoon images have sim-
ilar surfaces, and guide the generator G to learn the
information stored in the extracted surface representa-
tion. Let Ip denote the input photo and Ic denote the
reference cartoon images, we formulate the surface loss
as:

Lsurface (G,Ds) = logDs(Fdgf (Ic, Ic))

+ log (1−Ds (Fdgf (G (Ip) , G (Ip))))
(5)

As luminance and color information make it easy to dis-
tinguish between cartoon images and real-world pho-
tos. We propose a random color shift algorithm Frcs

to extract single-channel texture representation from
color images, which retains high-frequency textures
and decreases the influence of color and luminance.

Frcs (Irgb) = (1−α) (β1 ∗ Ir + β2 ∗ Ig + β3 ∗ Ib)+α∗Y
(6)

In Equation 6, Irgb represents 3-channel RGB color
images, Ir, IgandIb represent three color channels, and
Y represents standard grayscale image converted from
RGB color image. We set

α = 0.8, β1, β2, β3 ∼ U(−1, 1)

.

The random color shift can generate random intensity
maps with luminance and color information removed.
Then a discriminator Dt is introduced to distinguish
texture representations extracted from model outputs
and cartoons, and guide the generator to learn the clear
contours and fine textures stored in the texture repre-
sentations. Let Ip denotes the input image and Ic de-
notes the reference cartoon images, we formulate the
textural loss as:

Ltexture (G,Dt) = logDt (Frcs (Ic))

+ log (1−Dt (Frcs (G (Ip))))
(7)

3.2.4 Total-variation Loss

The total-variation loss Ltv [1] is used to impose spa-
tial smoothness on generated images. It also reduces

high-frequency noises such as salt-and-pepper noise. In
Equation 8, H, W, C represent spatial dimensions of
images.

Ltv =
1

H ∗W ∗ C
∥∇x (G (Ip)) +∇y (G (Ip))∥ (8)

4. Experiments
4.1. Setup

We implement our network details with PyTorch. We
use Adam algorithm to optimize the two networks.
During training, the learning rate is set to 2 ∗ 10−4,
and the batch size is set to 16. We firstly pre-train the
generator for 100 epochs, and then jointly optimize the
generator and discriminator based on the framework.
After every 100 epochs, we will stop to observe the loss
values and the performance of the generated images,
then adjust the weight of different loss functions, and
stop training until the quality of outputs is satisfactory
enough.

4.2. Datasets

For the real-world images, we chose Flickr Image
Dataset [8], which contains about 31.8k pictures of
real scenes. For the cartoon style images, we collected
about 3k key frames from the works of Kyoto anima-
tion, P.A. Works, Shinkai Makoto, Hosoda Mamoru,
and Miyazaki Hayao.

Finally, we crop and resize all images to 256*256 reso-
lution as the training set.

4.3. Qualitative Comparison

Comparisons between our method and previous meth-
ods are shown in Figure 5. We can observe that the
images cartoonGAN generated are blurry and have
some color deviation. Though the white-box frame-
work solves these problems, it still can not generate im-
ages that have both satisfactory foreground characters
and background contents. For example, the method
Wang uses either has a poor background cartoonize ef-
fect, or the character’s been generated roughly and lose
lots of details. Our method not only takes into account
the quality of image generation, but also achieves high-
quality generation of the respective semantic dimen-
sions of the foreground and background. we generate
more natural cartoonized grass and walls and detailed
facial features.

4.4. Quantitative Evaluation

Frechet Inception Distance (FID) [7] is wildly-used to
quantitatively evaluate the quality of synthesized im-
ages. Pre-trained Inception-V3 model [18] is used to



(q) Original Photo (r) CartoonGAN (s) Wang (t) Ours

Figure 5. Results of our method compared with CartoonGAN[4] and Wang[19]

extract high-level features of images and calculate the
distance between two image distributions. We use FID
to evaluate the performance of previous methods and
our method.

As is shown in Table 1, our method generates images
with the smallest FID to cartoon image distribution,
which proves it generates results most similar to car-
toon images. The output of our method also has the
smallest FID to real-world photo distribution, indicat-
ing that our method loyally preserves image semantic
and content information.

Method FID with Cartoon FID with Real
CartoonGAN 143.55 149.88

Wang 124.72 145.34
Ours 122.51 135.82

Table 1. Quantitative Evaluation Results. Ours is better.

4.5. Ablation Study

We show the results of ablation studies in Figure 6.
Ablating the semantic module causes less natural car-
toonized grass and snowfield, and lose some facial de-
tails.So in conclusion, semantic module helps improve



the cartoonizaiton ability of our method.

(g) Original Photo (h) W/O Semantic
Module

(i) With Semantic
Module

Figure 6. Ablation study by removing semantic module.

——————————————————-

5. Conclusion
In this paper, we propose a semantic module for
style transfer especially image cartoonization frame-
work based on GAN, which can generate high-quality
cartoonized style images from real-world photos. Our
semantic module is used for describing various seman-
tic regions and matching these regions in different im-
age sets. Extensive quantitative and qualitative experi-
ments have been conducted to validate the performance
of our framework. Ablation studies are also conducted
to demonstrate the influence of our semantic module.
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