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Correspondence: matching points, patches,
edges, or regions across images
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1. Find a set of
distinctive key-
points

2. Define a region
around each
keypoint

3. Extract and
normalize the
region content

4. Compute a local
descriptor from the
normalized region

5. Match local
descriptors



Detection

More Repeatable More Points
Robust detection Robust to occlusion
Precise localization Works with less texture
Description
More Distinctive More Flexible
Minimize wrong matches Robust to expected variations

Maximize correct matches



Invariance vs. Covariance

e Invariance:
» features(transform(image)) = features(image)

e Covariance:
~ features(transform(image)) = transform(features(image))

Covariant detection = invariant description
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Given: Two images of the same scene with a large scale
difference between them.

Goal: Find the same interest points independently in
each image.

Solution: Search for maxima of suitable functions in
scale and in space (over the image).

Two strategies
> Laplacian-of-Gaussian (LoG)
» Difference-of-Gaussian (DoG) as a fast approximation

» These can be used either on their own, or in combinations with
single-scale keypoint detectors (Harris, Hessian).

2021/6/7



Orientation Normalization

e Compute orientation histogram [Lowe, SIFT, 1999
e Select dominant orientation

e Normalize: rotate to fixed orientation

27
Slide adapted from David Lowe - -
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Summary: Affine Invariance

Eliminate rotational Compare
ambiguity descriptors
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Extract affine regions Normalize regions
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Feature Descriptor

* Disadvantage of patches as descriptors:
- Small shifts can affect matching score a lot

EER
AR

e Solution: histograms
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Feature Descriptor: SIFT

e Scale Invariant Feature Transform

e Descriptor computation:
- Divide patch into 4x4 sub-patches: 16 cells
» Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch
~ Resulting descriptor: 4x4x8 = 128 dimensions

~ Yy

# K >
— NN
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David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.
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1. Split the interest region (20s x 20s) into 4 x 4 square sub-regions.
2. Calculate Haar wavelet responses dx and dy, and weight the
responses with a Gaussian kernel.

3. Sum the response over each sub-region for dx and dy, then sum
the absolute value of response.

4. Concatenate summation
results in all sub-regions,

forming a 64D SURF
descriptor.
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Local Descriptors: Trend

CNN based methods

Learning based methods

Binary descriptor

SIFT and its variants

Early
methods

07 10 15
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2021/6/7 12



X. Han et al. Matchnet: Unifying feature and metric learning for patch-based matching. In CVPR 2015.

A: Feature network

Bottleneck

Pool4

Pool1

Pool0
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MatchNet

B: Metric network

FC3 + Softmax

II
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FC1

C: MatchNet in training
Cross-Entropy Loss

Metric network

=
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Simultaneously learn the
descriptor and the metric

Siamese Feature descriptor
network

Metric network on top

Cross-entropy loss, transfer
matching problem to
classification problem

Train time: 1 day — 1 week
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X. Han et al. Matchnet: Unifying feature and metric learning for patch-based matching. In CVPR 2015.

Training MatchNet

Patch set 1 Patch set 2

> Trained feature network
 Cross-entropy error 54 I I I I
1 — ) ,\
E=—=% [yilog(yi) + (1 — ;) log(1 — 4i)] oM
" 1=1 Feature set 1

Feature pairs B -

« Stochastic gradient descent (SGD) 28- -
Feature set 2

Ny
« A special reservoir sampler for n,
. . Trained metric network .
negative sampling Pairwise
n, | matching
I I I scores
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X. Han et al. Matchnet: Unifying feature and metric learning for patch-based matching. In CVPR 2015.

Testing MatchNet

Patch set 1 Patch set 2

64
Trained feature network

A two-stage prediction pipeline: 64 " I I I I I Il

N4 n;

Feature set 1

1. Generate feature descriptors for all Feature pars

patches.
-
Feature set 2

nyX Ny
2. Pair the features and push them nz
through the metric network to get Trained metric network 5 _n2.
airwise
the scores. I" n; | matching
- scores
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Raw pixels Sampled Locall orderless Global histogram

Generalization power
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Today'’s class

= Introduction to alignment

= Alighment methods
o Global methods
o Hypothesize and test
= |Image Transformation
o Common image transformations
o Examples of solving image alignment

= Homework: Mosaics



Alignment

Alignment: solving the transformation that makes
two things match better




S e
' p - (X’ p9 — (X,,y’)
Transformation T is a coordinate-changing machine:
p' = T(p)

What does it mean that T is global?
o Is the same for any point p
o  can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

X X
p'=Tp =T

'

Y Y



Fitting and Alignment

Fitting: find the parameters of a model that
best fit the data.

Alignment: find the parameters of the
transformation that best align matched points.



Fitting and Alignment

= Design challenges

o Design a suitable goodness of fit measure
= Similarity should reflect application goals
= Encode robustness to outliers and noise

o Design an optimization method
= Avoid local optima
= Find best parameters quickly



Fitting and Alignment: Methods

= Global optimization / Search for parameters
o Least squares fit
o Robust least squares
o lterative closest point (ICP)

= Hypothesize and test

o Generalized Hough transform
o RANSAC



Today'’s class

= Introduction to alignment

= Alighment methods
o Global methods
o Hypothesize and test
= |Image Transformation
o Common image transformations
o Examples of solving image alignment

= Homework: Mosaics



Data: (x;, ), ..., (x,, »,) t
Line equation: y, =mx; + b
Find (m, b) to minimize

E = Z;(yi —mx; _b)2

E:zjl[[x,. 1]{’;’}%}2- M‘ )

x, 1 Y,
T T T
=y Y-2(Ap) y+(Ap) (Ap)
dak _ 2ATAp-2A"y =0
dp

Matlab:p = A \ v;

A"Ap=ATy=p=(ATA) ATy



Problem with “vertical” least squares [#

A

Not rotation-invariant .
Fails completely for vertical /(
lines l




If (a°+b?=1) then
Distance between point (x,, y,) and
line ax+by+c=0 1s |ax;, + by; + |

ax+by+c=0

. Unit normal:

(x;,y;) N=(ab)

-

proof:
http://mathworld.wolfram.com/Point-
LineDistance2-Dimensional.html



http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html

If (a2+b?=1) then
Distance between point (x;, y;) and
line ax+by+c=0 1s |ax; + by, + |

Find (a, b, ¢) to minimize the sum of
squared perpendicular distances

E= Z;(axi +by. +c)’

ax+by+c=0

Unit normal:

(xi: y;) N=(a D)

-

Slide modified from S. Lazebnik



Find (a, b, ¢) to minimize the sum of ax+by+c=0

squared perpendicular distances

E = Z;(axl. +by. +c)’

. Unit normal:

(x;,y;) N=(ab)

Jo— bwr
(Z—C:Zi_lz(dxi+byi+c)=0 :__Zzl ’_;Zizlyi =-ax—-by
_ - 2
X=X »-y ;
E:Zizl(a(xi_)—c)+b(yi_.)—/))2: |:bi| :pTATAp
_xn—)_C yn_)—/
Co. . "ATA
minimize p’ A”Ap s.t. p’p=1 = minimize } P
p p

Solution is eigenvector corresponding to smallest eigenvalue of ATA

See details on Raleigh Quotient: http://en.wikipedia.org/wiki/Rayleigh guotient



http://en.wikipedia.org/wiki/Rayleigh_quotient

Recap: Two Common

Optimization Problems
4 Problem statement Solution
. . . 2 _
minimize |Ax —b| X = (ATA) 'A”b
least squares solution to Ax =b X =A\b (matlab)
\_ Y,
/ Problem statement Solution \

minimize x' A’Ax st x'x=1

x'x A <A, X=V,

minimize

Qon - trivial Isq solution to Ax =0 /




Least squares (global) optimization

Good
m Clearly specified objective
= Optimization is easy

Bad
= May not be what you want to optimize

= Sensitive to outliers
o Bad matches, extra points

= Doesn't allow you to get multiple good fits
o Detecting multiple objects, lines, etc.



(4J/Other ways to search for parameters

T T T

= Line search

1. For each parameter, step through values and choose
value that gives best fit

2. Repeat (1) until no parameter changes

» Grid search

1. Propose several sets of parameters, evenly sampled in
the joint set

2. Choose best (or top few) and sample joint parameters
around the current best; repeat
= Gradient descent
1. Provide initial position (e.g., random)

2. Locally search for better parameters by following
gradient



Today'’s class

= Introduction to alignment

= Alighment methods
o Global methods
o Hypothesize and test
= |Image Transformation
o Common image transformations
o Examples of solving image alignment

= Homework: Mosaics



Hypothesize and test

1. Propose parameters
o Try all possible
o Each point votes for all consistent parameters

o Repeatedly sample enough points to solve for
parameters

2. Score the given parameters

o Number of consistent points, possibly weighted by
distance

3. Choose from among the set of parameters
o Global or local maximum of scores

4. Possibly refine parameters using inliers



Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters,
iIncrementing those values in grid

3. Find maximum or local maxima in grid



Hough Space

y A b F 3
y = mow + bo
ﬁ
by| e
X m, m
Image space Hough (parameter) space

e Connection between image (x,)) and Hough (/1,b) spaces

- A'line in the image corresponds to a point in Hough space.
- To go from image space to Hough space:

- Given a set of points (x,)), find all (72,b) such that y = mx + b



Hough Space

y A b A
yo .......... e b — _wom + yO
Xo X m
Image space Hough (parameter) space

e Connection between image (x,y) and Hough (m,D0) spaces

~ A line in the image corresponds to a point in Hough space.
- To go from image space to Hough space:

- Given a set of points (x,)), find all (m,b) such that y = mx + b

- What does a point (x,, y,) in the image space map to?

- Answer: the solutions of b =-x,m + y,
- This is a line in Hough space.



Hough transform

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959

Given a set of poinfts, find the curve or line that
explains the data points best

o
y=mx+Db Hough space



Hough transform

Slide from S. Savarese



Polar Representation for Lines

* Issues with usual (m2,b) parameter space: can take on
infinite values, undefined for vertical lines.

[0.0] y al - d : perpendicular distance

from line to origin

d

@ : angle the perpendicular
makes with the x-axis

xcos@—ysméb=d

 Point in image space
= Sinusoid segment in
Hough space

Slide adapted from Steve Seitz




Hough Transform Algorithm

H: accumulator array (votes)

Using the polar parameterization:
xcos@+ ysinf=d

Basic Hough transform algorithm 0
1. Initialize H]d,d] = 0.
2. For each edge point (x,)) in the image

for @=0to 180 // some quantization d
d=xcos@+ysinf
H[d, 0] += 1
3. Find the value(s) of (d,6) where H[d, 6] is maximal.
4. The detected line in the image is given byd = x cos @ + ysin 7

e Time complexity (in terms of nhumber of votes)?



features votes



features votes

Need to adjust grid size or smooth

Slide from S. Savarese



features votes

Issue: spurious peaks due to uniform noise
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3. Hough votes - Edges

Find peaks and post-process ﬁ [



=

Showing longest segments found




Hough transform: pros and cong®-

ros

All points are processed independently, so can cope with
occlusion, gaps

Some robustness to noise: noise points unlikely to
contribute consistently to any single bin

Can detect multiple instances of a model in a single pass
ons

Complexity of search time increases exponentially with the
number of model parameters

Non-target shapes can produce spurious peaks in
parameter space

Quantization: can be tricky to pick a good grid size



Hough transform conclusions

Common applications
= Line fitting (also circles, ellipses, etc.)

= Object instance recognition (parameters are
position/scale/orientation)

= Object category recognition (parameters are
position/scale)



RANSAC

RANdom Sample Consensus

Approach: we want to avoid the impact of outliers,
so let’s look for “inliers”, and use those only.

Intuition: if an outlier is chosen to compute the
current fit, then the resulting line (transformation)
won’t have much support from rest of the points
(matches).



RANSAC

RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches)

2. Compute transformation from seed group

3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-

compute least-squares estimate of transformation on
all of the inliers

Keep the transformation with the largest number of
inliers




RANSAC Line Fitting Example

e Task: Estimate the best line
- How many points do we need to estimate the line?



RANSAC Line Fitting Example

e Task: Estimate the best line

°
°
°
o O
°
o) ¢ ®
$
°
o o Sample two points



RANSAC Line Fitting Example

e Task: Estimate the best line

Fit a line to them



RANSAC Line Fitting Example

e Task: Estimate the best line

Total number of points
within a threshold of
line.
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RANSAC Line Fitting Example

e Task: Estimate the best line

Repeat, until we get a
good result.



RANSAC Line Fitting Example

e Task: Estimate the best line

" “11 inlier points”

Repeat, until we get a
good result.



RANSAC: How many samples?

e How many samples are needed?
- Suppose w is fraction of inliers (points from line).
~ n points needed to define hypothesis (2 for lines)
~ k samples chosen.

14

e Prob. that a single sample of » points is correct: w

e Prob. that all £ samples fail is: (I-w")"

= Choose £ high enough to keep this below desired failure
rate.



Sample
size

5%

10%

Proportion of outliers

20%

25%

30%

14)) RANSAC: Computed k (p=0.99)

40%

50%

0O N O U1 N W N

Ui A A h W W

O 00 NN 6o U1 K

5
7
9
12
16
20
26

6
9
13
17
24
33
44

7
11
17
26
37
54
78

11
19
34
57
97
163
272

17
35
72
146
293
588
1177



After RANSAC

e RANSAC divides data into inliers and outliers and yields
estimate computed from minimal set of inliers.

e Improve this initial estimate with estimation over all
inliers (e.g. with standard least-squares minimization).

e But this may change inliers, so alternate fitting with re-
classification as inlier/outlier.




RANSAC Example

e Find best stereo match within a square search window
(here 300 pixels?)

Global transformation model: epipolar geometry

before RANSAC after RANSAC

Images from Hartley & Zisserman



RANSAC conclusions

Good

= Robust to outliers

= Applicable for larger number of objective function parameters
than Hough transform

= Optimization parameters are easier to choose than Hough
transform

Bad

= Computational time grows quickly with fraction of outliers and
number of parameters

= Not as good for getting multiple fits (though one solution is to
remove inliers after each fit and repeat)

Common applications
=  Computing a homography (e.g., image stitching)
= Estimating fundamental matrix (relating two views)



Today'’s class

= Introduction to alignment

= Alighment methods
o Global methods
o Hypothesize and test
= |Image Transformation
o Common image transformations
o Examples of solving image alignment

= Homework: Mosaics



Alignment problem

= \We have previously considered how to fit a model to
image evidence

o e.g., aline to edge points

= In alignment, we will fit the parameters of some
transformation according to a set of matching feature
pairs (“correspondences”).



Common transformations

Transformed

affine | perspective



Scaling

= Scaling a coordinate means multiplying each of its components
by a scalar

= Uniform scaling means this scalar is the same for all
components:

X 2




Scaling

= Non-uniform scaling: different scalars per component:

sz) r@——H
Y x 0.5




Scaling

Scaling operation: X'=ax
y'=by
Or, in matrix form:
x| |a Ofx
V' B 0 by

H_I

scaling matrix S



2-D Rotation

O(X,a y,)

(X, ¥)

e




2-D Rotation

Polar coordinates. ..
X =1 cos ()

y =rsin (¢)
x’=rcos (¢ +0)

O(X’, y,) y’=rsin (¢ + 0)

Trig Identity...

X Y) X’ =1 cos(¢p) cos(0) — r sin(d) sin(O)
? y’ =r sin(¢) cos(0) + r cos(¢) sin(O)

Substitute. ..
x’ =X co0s(0) - y sin(0)
0) y'=x sin(8) +y cos(6)




2-D Rotation

This is easy to capture in matrix form:
x| [cos(@) —sin(@)] x
y'| [smn (6’) cos(6’) 1y

\

Y~
R

Even though sin(0) and cos(0) are nonlinear functions of 0,
o Xx’is a linear combination of x and y
o y’is alinear combination of x and y

What is the inverse transformation?
o  Rotation by —0
o  For rotation matrices R_1 — RT



2-D Shearing

How would you implement
shearing?




2-D Shearing

m":m—l—a-y

y =b-z+y
or in matrix form:

HEH




What transformations can be
represented with a 2x2 matrix?

2D Scaling?

xX'=s. *x x' s. 0| x

y'=s,%y LY sy
2D Rotate around (0,0)?

x':cos@*x—sjn@*y h'a B cos® —smO || x

Y'=smO*x+cos®*y y'| |sin® cos® |y
2D Shear?

xX'=x+sh_*y x| | 1 sh, |x]

y'=sh *x+y ' sh 1Ly




What transformations can be
represented with a 2x2 matrix?

2D Mirror about Y axis?

s BT

2D Translation?
X'=x+t,

y'=y+t,

NO!

Source: Alyosha E



x'| la b x

y'| e d|y

Only linear 2D transformations can be
represented with a 2x2 matrix.

Linear transformations are combinations of ...
o Scale,

o Rotation,

o Shear, and

o Mirror

Source: Alyosha Ef



Homogeneous coordinates

To convert to homogeneous coordinates:
-

(z,y) = | ¥

1

homogeneous image
coordinates

Converting from homogeneous coordinates

X

y | = (z/w,y/w)




Homogeneous Coordinates

Q: How can we represent 2d translation as a

3x3 matrix using homogeneous coordinates?
X'=x+t,

y'=y+t,
A: Using the rightmost column:
1 0 ¢

Translation =| 0 1 t,

0 0 1

Source: Alyosha k



Translation

Homogeneous Coordinates
0 ¢ [x X+t
1t |ly|=|y+e,
0o 1|1] | 1

Source: Alyosha k



Basic 2D Transformations

Basic 2D transformations as 3x3 matrices

' 1 0 7 |x X' s. 0 O|x
yi=10 1 ¢ |y yi=10 s, 0}y
1] |0 0 1]1] 1] |0 0 T1j1]
Translate Scale
(x'] [cos® —-sin® O x| x| [ 1 sh T x]
y'|=|sin® cos ® Ol y y'|\=|sh, 1 O}y
1] [ 0 0 1|1 1] 0 0 1)1

Rotate Shear



n Affine transformations are combinations of ...
o Linear transformations, and
o Translations

= Parallel lines remain parallel

. g




Affine transformations are combinations of

/
X
Linear transformations, and Y
Translations

Properties of affine transformations:

Lines map to lines

Parallel lines remain parallel
Ratios are preserved y' _
Closed under composition

or




Projective transformations are combos of ' Z’
« Affine transformations, and Y=
* Projective warps W] LE L7

Properties of projective transformations:
 Lines map to lines
« Parallel lines do not necessarily remain parallel
» Ratios are not preserved
» Closed under composition
* Models change of basis
» Projective matrix is defined up to a scale (8 DOF)




Image reprojection:
Homography

= A projective transform is a mapping betweén
any two PPs with the same center of projection

o rectangle should map to arbitrary quadrilateral
o parallel lines aren’t

o but must preserve straight lines PP2

= called Homography

;




To apply a given homography H wx! k% k] X
 Compute p°’ = Hp (regular matrix multiply) Wy, — | % % %k y
* Convert p’ from homogeneous to 1mage k% %
coordinates i W i _ i _] i
p’ H P



2D image transformations

¥ /—m projective
translation
.’"",'
I
Euclidean /
atfine >
SN~ X
Name Matrix #D.O.F. | Preserves: Icon
translation [ I ‘ t ]2 \ 2 orientation -+ - - -
2 X
rigid (Euclidean) [ R ‘ t ]2 ; 3 lengths + - - - O
X,
similarity [ sR ‘ t ]2 ; 4 angles + - - - O
2 X
atfine [ A ]2><‘3 6 parallelism + - - - E
projective [ H ]‘3><3 8 straight lines [‘




Today'’s class

= Introduction to alignment

= Alighment methods
o Global methods
o Hypothesize and test
= |Image Transformation
o Common image transformations
o Examples of solving image alignment

= Homework: Mosaics



Given matched points in {A} and {B}, estimate the translation of the object

Faarins



(to ty)

Least squares solution B y /
1. Write down objective function X _ i 4+
2. Derived solution B A
v N Vi Vi L

a) Compute derivative

b) Compute solution o x; =X
3. Computational solution 0 T =
a)— Write in form Ax=b o { tx} =
b) Solve using pseudo-inverse or eigenvalue 1 o7 | x?—x/
decomposition 0 1] -yl



(to t,)

Problem: outliers

RANSAC solution

1. Sample a set of matching points (1 pair) xl.B xl.A [
2. Solve for transformation parameters s~ 4 +

3. Score parameters with number of inliers Vi Vi ¢
4. Repeat steps 1-3 N times



Problem: outliers, multiple objects, and/or many-to-one matches
Hough transform solution

1. Initialize a grid of parameter values 2 A A
2. Each matched pair casts a vote for consistent ZB = ’A +| 7

Vglues | ¥y, V; l y
3. Find the parameters with the most votes

4. Solve using least squares with inliers



References

* We've created a script... for the part of the lecture on object
recognition & categorization "

. K. Grauman, B. Leibe Visual Object
Visual Object Recognition RECOEIton
Morgan & Claypool publishers, 2011

Kristen Grauman

* Chapter 3: Local Feature Extraction (Last lecture)
* Chapter 5: Geometric Verification (Today)



References

* More details on homography estimation can be found in

Chapter 4.7 of
> R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision PSS g
2nd Ed., Cambridge Univ. Pross, 2004 g‘gg':::gt‘f.;
in computer vision
* Details about the DoG detector and | '
the SIFT descriptor can be found in
> D. Lowe, Distinctive image features
from scale-invariant keypoints,

1JCV 60(2), pp. 91-110, 2004 e s

* Try the available local feature detectors and descriptors
> http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
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Obtain a wider angle view by combining multiple images.

Z)19S *S WoaJ dewn



Main questions

Alignment: Given two

0 T o images, what 1s the
® —_— © O transformation between
0 0 them?
[ [

Warping: Given a

© r 2 source image and a
© — ° O transformation, what
% O does the transformed

- o output look like?



=OW to stitch together a panora 3
& (a.k.a. mosaic)?

m Basic Procedure

o Take a sequence of images from the same position
= Rotate the camera about its optical center

o Compute transformation (homography) between
second image and first using corresponding points.

o Transform the second image to overlap with the first.
o Blend the two together to create a mosaic.
o (lf there are more images, repeat)
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T et

= Low-level vision: denoise, super resolution etc.
= Edge detection

= Grouping and segmentation

= Local descriptor and image matching

= Deep learning for vision

= Tracking, video analysis

= Vision and language

m Weakly/Self supervised learning

= Etc.



