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Correspondence and alignment

Correspondence: matching points, patches, 

edges, or regions across images

≈



Recap: Keypoint Matching

Af
Bf

A1

A2 A3

Tffd BA ),(

1. Find a set of   

distinctive key-

points 

3. Extract and 

normalize the    

region content  

2. Define a region 

around each 

keypoint   

4. Compute a local 

descriptor from the 

normalized region

5. Match local 

descriptors



Recap: Key trade-offs

More Repeatable More Points

A1

A2 A3

Detection

More Distinctive More Flexible

Description

Robust to occlusion

Works with less texture

Minimize wrong matches Robust to expected variations

Maximize correct matches

Robust detection

Precise localization



Invariance vs. Covariance
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Summary: Scale Invariant Detection
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Orientation Normalization
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Summary：Affine Invariance
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Feature Descriptor
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Feature Descriptor：SIFT
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SURF: Descriptor Extraction

2021/6/7 11



SIFT and its variantsSIFT and its variants

Early 

methods

Early 

methods

04 07 10 15

Learning based methodsLearning based methods

CNN based methodsCNN based methods

Binary descriptorBinary descriptor

Local Descriptors: Trend
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• Simultaneously learn the 

descriptor and the metric

• Siamese Feature descriptor 

network

• Metric network on top

• Cross-entropy loss, transfer 

matching problem to 

classification problem

• Train time：1 day – 1 week

MatchNet

X. Han et al. Matchnet: Unifying feature and metric learning for patch-based matching. In CVPR 2015.
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• Stochastic gradient descent (SGD)

• A special reservoir sampler for 

negative sampling

• Cross-entropy error

Training MatchNet

X. Han et al. Matchnet: Unifying feature and metric learning for patch-based matching. In CVPR 2015.
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A two-stage prediction pipeline:

1. Generate feature descriptors for all 

patches. 

2. Pair the features and push them 

through the metric network to get 

the scores.

Testing MatchNet

X. Han et al. Matchnet: Unifying feature and metric learning for patch-based matching. In CVPR 2015.
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Discriminative power

Raw pixels

Generalization power

Sampled Locally orderless Global histogram
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Today’s class

◼ Introduction to alignment

◼ Alignment methods

 Global methods

 Hypothesize and test

◼ Image Transformation

 Common image transformations

 Examples of solving image alignment

◼ Homework: Mosaics



Alignment

Alignment: solving the transformation that makes 

two things match better



Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?
 Is the same for any point p

 can be described by just a few numbers (parameters)

For linear transformations, we can represent T as a matrix

p’ = Tp

T

p = (x,y)
p’ = (x’,y’)
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Fitting: find the parameters of a model that 

best fit  the data.

Alignment: find the parameters of the 

transformation that best align matched points.

Fitting and Alignment



Fitting and Alignment

◼ Design challenges

 Design a suitable goodness of fit measure

◼ Similarity should reflect application goals

◼ Encode robustness to outliers and noise

 Design an optimization method

◼ Avoid local optima

◼ Find best parameters quickly



Fitting and Alignment: Methods

◼ Global optimization / Search for parameters
 Least squares fit

 Robust least squares

 Iterative closest point (ICP)

◼ Hypothesize and test
 Generalized Hough transform

 RANSAC



Today’s class

◼ Introduction to alignment

◼ Alignment methods

 Global methods

 Hypothesize and test

◼ Image Transformation

 Common image transformations

 Examples of solving image alignment

◼ Homework: Mosaics



Least squares line fitting

◼Data: (x1, y1), …, (xn, yn)

◼Line equation: yi = m xi + b

◼Find (m, b) to minimize 
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Problem with “vertical” least squares

• Not rotation-invariant

• Fails completely for vertical 

lines



Total least squares

If (a2+b2=1) then 

Distance between point (xi, yi) and 

line ax+by+c=0  is  |axi + byi + c|
 =

−+=
n

i ii dybxaE
1

2
)( (xi, yi)

ax+by+c=0

Unit normal: 

N=(a, b)

proof: 

http://mathworld.wolfram.com/Point-

LineDistance2-Dimensional.html

http://mathworld.wolfram.com/Point-LineDistance2-Dimensional.html


Total least squares

If (a2+b2=1) then 

Distance between point (xi, yi) and 

line ax+by+c=0  is  |axi + byi + c|

Find (a, b, c) to minimize the sum of 

squared perpendicular distances
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Total least squares

Find (a, b, c) to minimize the sum of 

squared perpendicular distances
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Recap: Two Common 

Optimization Problems

Problem statement Solution
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Least squares (global) optimization

Good

◼ Clearly specified objective

◼ Optimization is easy

Bad

◼ May not be what you want to optimize 

◼ Sensitive to outliers
 Bad matches, extra points

◼ Doesn’t allow you to get multiple good fits
 Detecting multiple objects, lines, etc.



Other ways to search for parameters

◼ Line search
1. For each parameter, step through values and choose 

value that gives best fit

2. Repeat (1) until no parameter changes

◼ Grid search
1. Propose several sets of parameters, evenly sampled in 

the joint set

2. Choose best (or top few) and sample joint parameters 
around the current best; repeat

◼ Gradient descent
1. Provide initial position (e.g., random)

2. Locally search for better parameters by following 
gradient



Today’s class

◼ Introduction to alignment

◼ Alignment methods

 Global methods

 Hypothesize and test

◼ Image Transformation

 Common image transformations

 Examples of solving image alignment

◼ Homework: Mosaics



Hypothesize and test

1. Propose parameters

 Try all possible

 Each point votes for all consistent parameters

 Repeatedly sample enough points to solve for 

parameters

2. Score the given parameters

 Number of consistent points, possibly weighted by 

distance

3. Choose from among the set of parameters

 Global or local maximum of scores

4. Possibly refine parameters using inliers



Hough Transform: Outline

1. Create a grid of parameter values

2. Each point votes for a set of parameters, 

incrementing those values in grid

3. Find maximum or local maxima in grid



Hough Space



Hough Space



x

y

b

m

y = m x + b

Hough transform

Given a set of points, find the curve or line that 

explains the data points best

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. 
High Energy Accelerators and Instrumentation, 1959 

Hough space
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Slide from S. Savarese

Hough transform



Polar Representation for Lines



Hough Transform Algorithm



features votes

Hough transform - experiments

Slide from S. Savarese



features votes

Need to adjust grid size or smooth

Noisy data

Slide from S. Savarese

Hough transform - experiments



Issue: spurious peaks due to uniform noise
features votes

Slide from S. Savarese

Hough transform - experiments



1. Image → Canny



2. Canny → Hough votes



3. Hough votes → Edges 

Find peaks and post-process



Real-World Example



Hough transform: pros and cons

Pros

◼ All points are processed independently, so can cope with 
occlusion, gaps

◼ Some robustness to noise: noise points unlikely to 
contribute consistently to any single bin

◼ Can detect multiple instances of a model in a single pass

Cons

◼ Complexity of search time increases exponentially with the 
number of model parameters 

◼ Non-target shapes can produce spurious peaks in 
parameter space

◼ Quantization: can be tricky to pick a good grid size



Hough transform conclusions

Common applications

◼ Line fitting (also circles, ellipses, etc.)

◼ Object instance recognition (parameters are 

position/scale/orientation)

◼ Object category recognition  (parameters are 

position/scale)



RANSAC

◼ RANdom Sample Consensus

◼ Approach: we want to avoid the impact of outliers, 

so let’s look for “inliers”, and use those only.

◼ Intuition: if an outlier is chosen to compute the 

current fit, then the resulting line (transformation) 

won’t have much support from rest of the points

(matches).



RANSAC



RANSAC Line Fitting Example



RANSAC Line Fitting Example



RANSAC Line Fitting Example



RANSAC Line Fitting Example



RANSAC Line Fitting Example



RANSAC Line Fitting Example



RANSAC Line Fitting Example



RANSAC: How many samples?



RANSAC: Computed k (p=0.99)



After RANSAC



RANSAC Example



RANSAC conclusions

Good
◼ Robust to outliers

◼ Applicable for larger number of objective function parameters 
than Hough transform

◼ Optimization parameters are easier to choose than Hough 
transform

Bad
◼ Computational time grows quickly with fraction of outliers and 

number of parameters 

◼ Not as good for getting multiple fits (though one solution is to 
remove inliers after each fit and repeat)

Common applications
◼ Computing a homography (e.g., image stitching)

◼ Estimating fundamental matrix (relating two views)



Today’s class

◼ Introduction to alignment

◼ Alignment methods

 Global methods

 Hypothesize and test

◼ Image Transformation

 Common image transformations

 Examples of solving image alignment

◼ Homework: Mosaics



Alignment problem

◼ We have previously considered how to fit a model to 

image evidence

 e.g., a line to edge points

◼ In alignment, we will fit the parameters of some 

transformation according to a set of matching feature 

pairs (“correspondences”).

T

xi

xi

'



Common transformations

translation rotation aspect

affine perspective

original
Transformed



Scaling

◼ Scaling a coordinate means multiplying each of its components 
by a scalar

◼ Uniform scaling means this scalar is the same for all 
components:

 2



◼ Non-uniform scaling: different scalars per component:

Scaling

X  2,

Y  0.5



Scaling

◼ Scaling operation:

◼ Or, in matrix form:
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2-D Rotation



(x, y)

(x’, y’)

x’ = x cos() - y sin()

y’ = x sin() + y cos()



2-D Rotation

Polar coordinates…

x = r cos (f)

y = r sin (f)

x’ = r cos (f + )

y’ = r sin (f + )

Trig Identity…

x’ = r cos(f) cos() – r sin(f) sin()

y’ = r sin(f) cos() + r cos(f) sin()

Substitute…

x’ = x cos() - y sin()

y’ = x sin() + y cos()

(x, y)

(x’, y’)

f



2-D Rotation

This is easy to capture in matrix form:

Even though sin() and cos() are nonlinear functions of ,

 x’ is a linear combination of x and y

 y’ is a linear combination of x and y

What is the inverse transformation?

 Rotation by –

 For rotation matrices
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2-D Shearing

Shear

How would you implement 

shearing?



Shear or in matrix form:

2-D Shearing



What transformations can be 

represented with a 2x2 matrix?

2D Rotate around (0,0)?
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yxx

*cos*sin'
*sin*cos'

+=
−=




















−
=









y

x

y

x

cossin

sincos

'

'

2D Shear?

yxshy

yshxx

y

x

+=

+=

*'

*'

















=









y

x

sh

sh

y

x

y

x

1

1

'

'

2D Scaling?

ysy

xsx

y

x

*'

*'

=

=
















=









y

x

s

s

y

x

y

x

0

0

'

'



What transformations can be 

represented with a 2x2 matrix?

Source: Alyosha Efros

2D Mirror about Y axis?
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2D Linear Transformations

◼ Only linear 2D transformations can be 

represented with a 2x2 matrix.

◼ Linear transformations are combinations of …
 Scale,

 Rotation,

 Shear, and

 Mirror
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Homogeneous coordinates

homogeneous image 

coordinates

Converting from homogeneous coordinates

To convert to homogeneous coordinates:



Homogeneous Coordinates

◼ Q: How can we represent 2d translation as a 

3x3 matrix using homogeneous coordinates?

◼ A: Using the rightmost column:
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Translation
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Basic 2D Transformations

◼ Basic 2D transformations as 3x3 matrices
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2D Affine Transformations

◼ Affine transformations are combinations of …

 Linear transformations, and

 Translations

◼ Parallel lines remain parallel
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Affine Transformations

Affine transformations are combinations of 

• Linear transformations, and

• Translations

Properties of affine transformations:

• Lines map to lines

• Parallel lines remain parallel

• Ratios are preserved

• Closed under composition
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Projective Transformations
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• Affine transformations, and

• Projective warps

Properties of projective transformations:

• Lines map to lines

• Parallel lines do not necessarily remain parallel

• Ratios are not preserved

• Closed under composition

• Models change of basis

• Projective matrix is defined up to a scale (8 DOF)



Image reprojection: 

Homography

◼ A projective transform is a mapping between 

any two PPs with the same center of projection

 rectangle should map to arbitrary quadrilateral 

 parallel lines aren’t

 but must preserve straight lines

◼ called Homography
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Homography
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To apply a given homography H

• Compute p’ = Hp   (regular matrix multiply)

• Convert p’ from homogeneous to  image 

coordinates



2D image transformations



Today’s class

◼ Introduction to alignment

◼ Alignment methods

 Global methods

 Hypothesize and test

◼ Image Transformation

 Common image transformations

 Examples of solving image alignment

◼ Homework: Mosaics



Example: solving for translation

A1

A2 A3
B1

B2 B3

Given matched points in {A} and {B}, estimate the translation of the object
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Example: solving for translation

A1

A2 A3
B1

B2 B3

Least squares solution
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1. Write down objective function

2. Derived solution

a) Compute derivative

b) Compute solution

3. Computational solution

a) Write in form Ax=b

b) Solve using pseudo-inverse or eigenvalue
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Example: solving for translation

A1

A2 A3
B1

B2 B3

RANSAC solution
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1. Sample a set of matching points (1 pair)

2. Solve for transformation parameters

3. Score parameters with number of inliers

4. Repeat steps 1-3 N times

Problem: outliers
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Example: solving for 

translation

A1

A2 A3
B1

B2 B3

Hough transform solution
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1. Initialize a grid of parameter values

2. Each matched pair casts a vote for consistent 

values

3. Find the parameters with the most votes

4. Solve using least squares with inliers

A4

A5 A6

B4

B5 B6

Problem: outliers, multiple objects, and/or many-to-one matches
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Today’s class

◼ Introduction to alignment

◼ Alignment methods

 Global methods

 Hypothesize and test

◼ Image Transformation

 Common image transformations

 Examples of solving image alignment

◼ Homework: Mosaics



Homework: Mosaics

Obtain a wider angle view by combining multiple images.
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Main questions

T

T

Warping: Given a 

source image and a 

transformation, what 

does the transformed 

output look like?

Alignment: Given two 

images, what is the 

transformation between 

them?



How to stitch together a panorama 

(a.k.a. mosaic)?

◼ Basic Procedure

 Take a sequence of images from the same position

◼ Rotate the camera about its optical center

 Compute transformation (homography) between 

second image and first using corresponding points.

 Transform the second image to overlap with the first.

 Blend the two together to create a mosaic.

 (If there are more images, repeat)



本科生大作业

◼ 综述性研究报告：针对一个专门话题，进行深入
调研分析，形成一篇高质量的综述。

◼ 培养：查阅文献，阅读文献，撰写文献的能力，
可能启发对某个方向深入研究的兴趣。

◼ 提交格式：CVPR论文格式，建议英文撰写。

◼ 调研范围：顶级会议和顶级期刊论文，以及最新
的arXiv论文，

◼ 不要仅仅去看一些公众号、知乎、中文博客

◼ 提交时间：6月20号之前（毕业班）



话题

◼ Low-level vision: denoise, super resolution etc.

◼ Edge detection

◼ Grouping and segmentation

◼ Local descriptor and image matching

◼ Deep learning for vision

◼ Tracking, video analysis

◼ Vision and language

◼ Weakly/Self supervised learning

◼ Etc.


