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Edge detection

◼ Goal: map image from 2d array of pixels to a set of 

curves or line segments or contours.

◼ Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007
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Issues

◼ No precise problem formulation

◼ Much harder than it seems to be

◼ Edge detectors usually work by detecting “big 

changes” in image intensity

◼ Boundary is contour in the image plane that 

represents a change in pixel ownership from 

object or surface to another.
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Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast

3. Edge localization

Determine which local maxima from filter output are 
actually edges vs. noise 

Thresholding and thinning
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Canny edge detector

◼ Filter image with derivative of Gaussian 

◼ Find magnitude and orientation of gradient

◼ Non-maximum suppression:

 Thin wide “ridges” down to single pixel width

◼ Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and 

the low threshold to continue them

◼ MATLAB:   edge(image, ‘canny’);

◼ >>help edge

Source: D. Lowe, L. Fei-Fei
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Effect of  (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features
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Low-level edges vs. perceived contours

◼ Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude
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Error Measure Validation
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Findings

1. A simple linear model is sufficient for cue 
combination

– All cues weighted approximately equally in logistic

2. Proper texture edge model is not optional for 
complex natural images

– Texture suppression is not sufficient!

3. Significant improvement over state-of-the-art in 
boundary detection

– Pb(x,y,) useful for higher-level processing

4. Empirical approach critical for both cue 
calibration and cue combination
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Spectral Pb
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Edge Detection with Structured 

Random Forests 

◼ Goal: quickly predict whether each 
pixel is an edge

◼ Insights
 Predictions can be learned from training 

data

 Predictions for nearby pixels should not 
be independent

◼ Solution
 Train structured random forests to split 

data into patches with similar boundaries 
based on features

 Predict boundaries at patch level, rather 
than pixel level, and aggregate (average 
votes)

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Boundaries 

in patch
23
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Edge Detection with Structured 

Random Forests

◼ Algorithm

1. Extract overlapping 32x32 

patches at three scales

2. Features are pixel values and 

pairwise differences in feature 

maps (LUV color, gradient 

magnitude, oriented gradient)

3. Predict 𝑇 boundary maps in the 

central 16x16 region using 𝑇
trained decision trees

4. Average predictions for each pixel 

across all patches
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General Information Gain
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Holistically nested edge detection

https://arxiv.org/pdf/1504.06375.pdf28

https://arxiv.org/pdf/1504.06375.pdf
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State of edge detection

◼ Local edge detection is mostly solved
 Intensity gradient, color, texture 

 HED on BSDS 500 is near human performance

◼ Some room for improvement by taking advantage 
of higher-level knowledge (e.g., objects)

◼ Still hard to produce all objects within a small 
number of regions 
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Today’s Class

◼ What are grouping problems in vision?

◼ Inspiration from human perception

 Gestalt properties

◼ Bottom-up segmentation via clustering
 Mode finding and mean shift: k-means, GMM, mean-shift

◼ Graph-based segmentation: Normalized Cut

◼ Oversegmentation
 Watershed algorithm, Felzenszwalb and Huttenlocher graph-

based

◼ Multiple segmentation
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From Images to Objects

"I stand at the window and see a house, trees, sky. Theoretically I 

might say there were 327 brightnesses and nuances of colour.  Do

I have "327"? No. I have sky, house, and trees." --Max Wertheimer



Grouping in vision

◼ Goals:

 Gather features that belong together

 Obtain an intermediate representation that 

compactly describes key image or video parts



Grouping in vision

◼ Goals:

 Gather features that belong together

 Obtain an intermediate representation that compactly 

describes key image (video) parts

◼ Top down vs. bottom up segmentation

 Top down: pixels belong together because they are from the 

same object

 Bottom up: pixels belong together because they look similar

◼ Hard to measure success

 What is interesting depends on the app.



Examples of grouping in vision

[Figure by J. Shi]

[http://poseidon.csd.auth.gr/LAB_RESEARCH/Latest/imgs/S

peakDepVidIndex_img2.jpg]

Determine image regions

Group video frames into shots

[Figure by Wang & Suter]

Object-level grouping

Figure-ground

[Figure by Grauman & Darrell]



Image segmentation

Goal: Group pixels into meaningful or 

perceptually similar regions



Segmentation for efficiency: 

“superpixels”

[Felzenszwalb and Huttenlocher 2004]

[Shi and Malik 2001]



Segmentation for feature 

support

50x50 Patch50x50 Patch



Segmentation for object 

proposals

“Selective Search” [Sande, Uijlings et al. ICCV 2011, IJCV 2013]

[Endres Hoiem ECCV 2010, IJCV 2014]



Segmentation as a result

Rother et al. 2004



Types of segmentations

Oversegmentation Undersegmentation

Multiple Segmentations



Major processes for segmentation

◼ Bottom-up: group tokens with similar features

◼ Top-down: group tokens that likely belong to 

the same object



Today’s Class

◼ What are grouping problems in vision?

◼ Inspiration from human perception

 Gestalt properties

◼ Bottom-up segmentation via clustering
 Mode finding and mean shift: k-means, GMM, mean-shift

◼ Graph-based segmentation: Normalized Cut

◼ Oversegmentation
 Watershed algorithm, Felzenszwalb and Huttenlocher graph-

based

◼ Multiple segmentation
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What are meta-cues for grouping?



Gestalt Theory

◼ Gestalt: whole or group

 Whole is greater than sum of its parts

 Relationships among parts can yield new properties/features

◼ Psychologists identified series of factors that predispose set of 

elements to be grouped (by human visual system)

Untersuchungen zur Lehre von der Gestalt,

Psychologische Forschung, Vol. 4, pp. 301-350, 1923

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

“I stand at the window and see a house, trees, sky. 

Theoretically I might say there were 327 brightnesses

and nuances of colour. Do I have "327"? No. I have sky, 

house, and trees.”

Max Wertheimer

(1880-1943)

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm


The Muller-Lyer illusion

Gestaltism



We perceive the interpretation, 

not the senses



Gestalt Factors

◼ These factors make intuitive sense, but are very difficult to translate into 
algorithms.



Continuity through Occlusion Cues



Continuity through Occlusion Cues

Continuity, explanation by occlusion



Continuity through Occlusion 

Cues
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From Steve Lehar: The Constructive Aspect of Visual Perception

Grouping by invisible completion



From Steve Lehar: The Constructive Aspect of Visual Perception

Grouping involves global interpretation



Figure-Ground Discrimination 



The Ultimate Gestalt?



Grouping phenomena in real 

life

Forsyth & Ponce, Figure 14.7



Grouping phenomena in real 

life

Forsyth & Ponce, Figure 14.7



Gestalt cues

◼ Good intuition and basic principles for grouping

◼ Basis for many ideas in segmentation and 

occlusion reasoning

◼ Some (e.g., symmetry) are difficult to 

implement in practice



Today’s Class

◼ What are grouping problems in vision?

◼ Inspiration from human perception

 Gestalt properties

◼ Bottom-up segmentation via clustering
 Mode finding and mean shift: k-means, GMM, mean-shift

◼ Graph-based segmentation: Normalized Cut

◼ Oversegmentation
 Watershed algorithm, Felzenszwalb and Huttenlocher graph-

based

◼ Multiple segmentation
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Clustering

◼ Clustering algorithms:
 Unsupervised learning

 Detect patterns in unlabeled 
data
◼ E.g. group emails or search results

◼ E.g. find categories of customers

◼ E.g. group pixels into regions

 Useful when don’t know what 
you’re looking for

 Requires data, but no labels

Slide credit: Dan Klein
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black pixels
gray 

pixels

white 

pixels

• These intensities define the three groups.

• We could label every pixel in the image according to 

which of these primary intensities it is.

• i.e., segment the image based on the intensity feature.

• What if the image isn’t quite so simple?

1 2
3

Image segmentation: toy example

Slide credit: Kristen Grauman
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Slide credit: Kristen Grauman



input image
intensity
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• Now how to determine the three main intensities that 

define our groups?

• We need to cluster.

Slide credit: Kristen Grauman



0 190 255

• Goal: choose three “centers” as the representative 

intensities, and label every pixel according to which of 

these centers it is nearest to.

• Best cluster centers are those that minimize SSD 

between all points and their nearest cluster center ci:

1 2
3

intensity

Slide credit: Kristen Grauman



Clustering

◼ With this objective, it is a “chicken and egg” problem:

 If we knew the cluster centers, we could allocate 

points to groups by assigning each to its closest 

center.

 If we knew the group memberships, we could get the 

centers by computing the mean per group.

Slide credit: Kristen Grauman



K-means clustering

◼ Basic idea: randomly initialize the k cluster centers, and 

iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c1, ..., cK

2. Given cluster centers, determine points in each cluster

◼ For each point p, find the closest ci.  Put p into cluster i

3. Given points in each cluster, solve for ci

◼ Set ci to be the mean of points in cluster i

4. If ci have changed, repeat Step 2

Properties
• Will always converge to some solution

• Can be a “local minimum”

◼ does not always find the global minimum of objective function:



K-Means

◼ An iterative 
clustering algorithm

 Pick K random points 
as cluster centers 
(means)

 Alternate:

◼ Assign data instances 
to closest mean

◼ Assign each mean to 
the average of its 
assigned points

 Stop when no points’ 
assignments change



Slide credit Andrew 

Moore











Initialization

◼ K-means is non-deterministic

 Requires initial means

 It does matter what you pick!

 What can go wrong?

 Various schemes for 

preventing this kind of thing



◼ A local optimum:

K-Means Getting Stuck



K-means: pros and cons

Pros
◼ Simple, fast to compute

◼ Converges to local minimum of 
within-cluster squared error

Cons/issues
◼ Setting k?

◼ Sensitive to initial centers

◼ Sensitive to outliers

◼ Detects spherical clusters

◼ Assuming means can be 
computed



Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

Grouping pixels based 

on intensity similarity 

Feature space: intensity value (1-d) 

Slide credit: Kristen Grauman



K=2

K=3

img_as_col = double(im(:));

cluster_membs = kmeans(img_as_col, K);

labelim = zeros(size(im));

for i=1:k

inds = find(cluster_membs==i);

meanval = mean(img_as_column(inds));

labelim(inds) = meanval;

end

quantization of the feature space; 

segmentation label map

Slide credit: Kristen Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

R=255

G=200

B=250

R=245

G=220

B=248

R=15

G=189

B=2

R=3

G=12

B=2
R

G

B

Grouping pixels based 

on color similarity 

Feature space: color value (3-d) 
Slide credit: Kristen Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

Grouping pixels based 

on intensity similarity 

Clusters based on intensity 

similarity don’t have to be spatially 

coherent.

Slide credit: Kristen Grauman



Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

X

Grouping pixels based on 

intensity+position similarity 

Y

Intensity

Both regions are black, but if we also include 

position (x,y), then we could group the two into 

distinct segments; way to encode both similarity & 

proximity.

Slide credit: Kristen Grauman



Segmentation as clustering

• Color, brightness, position alone are not 

enough to distinguish all regions…



Segmentation as clustering

Depending on what we choose as the feature space, we 

can group pixels in different ways.

F24

Grouping pixels based 

on texture similarity 

F2

Feature space: filter bank responses (e.g., 24-d) 

F1

…

Filter bank 

of 24 filters



Recall: texture representation example

statistics to 

summarize patterns 

in small windows 

mean 

d/dx

value 

mean 

d/dy

value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…

Dimension 1 (mean d/dx value)
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Windows with 

small gradient in 

both directions

Windows with 

primarily vertical 

edges

Windows with 

primarily horizontal 

edges
Both

Slide credit: Kristen Grauman



Segmentation with texture features

• Find “textons” by clustering vectors of filter bank outputs

• Describe texture in a window based on texton histogram 

Malik, Belongie, Leung and Shi. IJCV 2001.

Texton mapImage

Adapted from Lana Lazebnik

Texton index Texton index

C
o
u
n
t

C
o
u
n
t

Texton index



Image segmentation example

Slide credit: Kristen Grauman



Probabilistic clustering

Basic questions

 what’s the probability that a point x is in cluster m?

 what’s the shape of each cluster?

K-means doesn’t answer these questions

Probabilistic clustering (basic idea)

 Treat each cluster as a Gaussian density function

Slide credit: Steve Seitz



Mixture of Gaussians
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Mixture of Gaussians

With enough components, can represent any 

probability density function

 Widely used as general purpose pdf estimator



Segmentation with Mixture of 

Gaussians

Pixels come from one of several Gaussian 

components

 We don’t know which pixels come from which 

components

 We don’t know the parameters for the components



Simple solution

1. Initialize parameters

2. Compute the probability of each hidden 
variable given the current parameters

3. Compute new parameters for each model, 
weighted by likelihood of hidden variables

4. Repeat 2-3 until convergence



Mixture of Gaussians: Simple Solution

1. Initialize parameters

2. Compute likelihood of hidden variables for 

current parameters

3. Estimate new parameters for each model, 

weighted by likelihood 
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Expectation Maximization (EM)
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Jensen’s Inequality

Log of sums is intractable

for concave functions f(x)

(so we maximize the lower bound!)



Expectation Maximization (EM) 

Algorithm

1. E-step: compute 

2. M-step: solve
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Expectation Maximization (EM) 

Algorithm

1. E-step: compute 

2. M-step: solve
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EM for Mixture of Gaussians
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Application of EM
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Segmentation with EM
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Summary of GMM
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Mean-Shift Segmentation

◼ An advanced and versatile technique for clustering-based 

segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis, PAMI 2002. 

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf


Mean-Shift Algorithm

◼ Iterative Mode Search
1. Initialize random seed, and window W

2. Calculate center of gravity (the “mean”) of W:

3. Shift the search window to the mean

4. Repeat Step 2 until convergence

26-Oct-17 103



Region of

interest

Center of

mass

Mean Shift

vector

Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean Shift

vector

Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Mean Shift
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel
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Slide by Y. Ukrainitz & B. Sarel
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Center of

mass

Mean-Shift
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Tessellate the space with windows Run the procedure in parallel

S
li

d
e 

b
y
 Y

. 
U

k
ra

in
it

z
&

 B
. 
S

ar
el

Real Modality Analysis

26-Oct-17 111



The blue data points were traversed by the windows towards the mode. S
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Real Modality Analysis
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◼ Attraction basin: the region for which all 

trajectories lead to the same mode

◼ Cluster: all data points in the attraction basin 

of a mode

Slide by Y. Ukrainitz & B. Sarel

Attraction basin



Mean shift algorithm

◼ Try to find modes of this non-parametric density



Mean shift clustering

◼ The mean shift algorithm seeks modes of the 

given set of points

1. Choose kernel and bandwidth

2. For each point:

a) Center a window on that point

b) Compute the mean of the data in the search window

c) Center the search window at the new mean location

d) Repeat (b,c) until convergence

3. Assign points that lead to nearby modes to the 

same cluster



◼ Compute features for each pixel (color, gradients, 

texture, etc); also store each pixel’s position

◼ Set kernel size for features Kf and position Ks

◼ Initialize windows at individual pixel locations

◼ Perform mean shift for each window until 

convergence

◼ Merge modes that are within width of Kf and Ks

Segmentation by Mean Shift



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Mean shift segmentation results



http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html


Problem: Computational Complexity
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Speed Up
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Speed Up
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Mean-shift: other issues

• Speedups
– Binned estimation – replace points within some “bin” by point 

at center with mass

– Fast search of neighbors – e.g., k-d tree or approximate NN

– Update all windows in each iteration (faster convergence)

• Other tricks
– Use kNN to determine window sizes adaptively

• Lots of theoretical support
D. Comaniciu and P. Meer, Mean Shift: A Robust Approach 
toward Feature Space Analysis, PAMI 2002. 



Technical Details

Comaniciu & Meer, 2002 



Kernel density estimation
Kernel

Data (1-D)

Estimated 

density



Other Kernels

source

https://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/


Technical Details

Comaniciu & Meer, 2002 

• Term1: this is proportional to the density estimate at x 

(similar to equation 1 from two slides ago).

• Term2: this is the mean-shift vector that points towards the 

direction of maximum density. 

Taking the derivative of:



Technical Details

Comaniciu & Meer, 2002 

Finally, the mean shift procedure from a given point xt is:

1. Computer the mean shift vector m:

2. Translate the density window: 

3. Iterate steps 1 and 2 until convergence.



Mean shift pros and cons

◼ Pros
 Good general-purpose segmentation

 Flexible in number and shape of regions

 Robust to outliers

 General mode-finding algorithm (useful for other problems 
such as finding most common surface normals)

◼ Cons
 Have to choose kernel size in advance

 Not suitable for high-dimensional features

◼ When to use it
 Oversegmentation

 Multiple segmentations

 Tracking, clustering, filtering applications
◼ D. Comaniciu, V. Ramesh, P. Meer: Real-Time Tracking of Non-

Rigid Objects using Mean Shift, Best Paper Award, IEEE Conf. 
Computer Vision and Pattern Recognition (CVPR'00), Hilton 
Head Island, South Carolina, Vol. 2, 142-149, 2000

http://comaniciu.net/Papers/MsTracking.pdf


Mean-shift reading

• Nicely written mean-shift explanation (with math)
http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-

algorithm/

• Includes .m code for mean-shift clustering

• Mean-shift paper by Comaniciu and Meer
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

• Adaptive mean shift in higher dimensions
http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf

http://saravananthirumuruganathan.wordpress.com/2010/04/01/introduction-to-mean-shift-algorithm/
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf
http://mis.hevra.haifa.ac.il/~ishimshoni/papers/chap9.pdf


Today’s Class

◼ What are grouping problems in vision?

◼ Inspiration from human perception

 Gestalt properties

◼ Bottom-up segmentation via clustering
 Mode finding and mean shift: k-means, GMM, mean-shift

◼ Graph-based segmentation: Normalized Cut

◼ Oversegmentation
 Watershed algorithm, Felzenszwalb and Huttenlocher graph-

based

◼ Multiple segmentation
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Images as graphs

◼ Fully-connected graph

 node for every pixel

 link between every pair of pixels, i,j

 similarity wij for each link

j

wij

c

Source: Seitz



Measuring affinity

◼ One possibility: 

Small sigma: 

group only 

nearby points

Large sigma: 

group distant 

points



Similarity matrix

Increasing sigma



Segmentation by Graph Cuts

◼ Break Graph into Segments
 Delete links that cross between segments

 Easiest to break links that have low cost (low 
similarity)
◼ similar pixels should be in the same segments

◼ dissimilar pixels should be in different segments

w

A B C

Source: Seitz



Cuts in a graph

◼ Link Cut
 set of links whose removal makes a graph disconnected

 cost of a cut:

A
B

One idea: Find minimum cut
• gives you a segmentation

• fast algorithms exist for doing this

Source: Seitz



But min cut is not always the 

best cut...



Normalized Cuts in a graph

A
B

Normalized Cut

• a cut penalizes large segments

• fix by normalizing for size of segments

• volume(A) = sum of costs of all edges that touch A

Source: Seitz
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Solving the Normalized Cut problem

◼ Exact discrete solution to Ncut is NP-hard even on 
regular grid [Papadimitriou’97]

◼ We first transform to

◼ Drawing on spectral graph theory, good 
approximation can be obtained by solving a 
generalized eigenvalue problem.



Recursive normalized cuts

1. Given an image or image sequence, set up a 
weighted graph: G=(V, E)

1. Vertex for each pixel

2. Edge weight for nearby pairs of pixels 

2. Solve for eigenvectors with the smallest 
eigenvalues: (D − W)y = λDy

1. Use the eigenvector with the second smallest 
eigenvalue to bipartition the graph

2. Note: this is an approximation

3. Recursively repartition the segmented parts if 
necessary

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdfDetails:

http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf


Normalized cuts results



Normalized cuts: Pro and con

◼ Pros
 Generic framework, can be used with 

many different features and affinity 
formulations

 Provides regular segments

◼ Cons
 Need to chose number of segments

 High storage requirement and time 
complexity

 Bias towards partitioning into equal 
segments

◼ Usage
 Use for oversegmentation when you want 

regular segments



Today’s Class

◼ What are grouping problems in vision?

◼ Inspiration from human perception

 Gestalt properties

◼ Bottom-up segmentation via clustering
 Mode finding and mean shift: k-means, GMM, mean-shift

◼ Graph-based segmentation: Normalized Cut

◼ Oversegmentation
 Watershed algorithm, Felzenszwalb and Huttenlocher graph-

based etc.

◼ Multiple segmentation
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Superpixel algorithms

◼ Goal is to divide the image into a large number 

of regions, such that each regions lie within 

object boundaries

◼ Examples

 Watershed

 Felzenszwalb and Huttenlocher graph-based

 Turbopixels

 SLIC



Watershed algorithm



Watershed segmentation

Image Gradient Watershed boundaries



Meyer’s watershed segmentation

1. Choose local minima as region seeds

2. Add neighbors to priority queue, sorted by 
value

3. Take top priority pixel from queue
1. If all labeled neighbors have same label, assign 

that label to pixel

2. Add all non-marked neighbors to queue

4. Repeat step 3 until finished (all remaining 
pixels in queue are on the boundary)

Meyer 1991Matlab: seg = watershed(bnd_im)



Simple trick

◼ Use Gaussian or median filter to reduce 

number of regions



Watershed usage

• Use as a starting point for hierarchical 
segmentation
– Ultrametric contour map (Arbelaez 2006)

• Works with any soft boundaries
– Pb (w/o non-max suppression)

– Canny (w/o non-max suppression)

– Etc.



Watershed usage
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Watershed pros and cons

• Pros
– Fast (< 1 sec for 512x512 image)

– Preserves boundaries

• Cons
– Only as good as the soft boundaries (which may be slow to 

compute)

– Not easy to get variety of regions for multiple segmentations

• Usage
– Good algorithm for superpixels, hierarchical segmentation



Graph-Based Segmentation

+ Good for thin regions

+ Fast

+ Easy to control coarseness of segmentations

+ Can include both large and small regions

- Often creates regions with strange shapes

- Sometimes makes very large errors

http://www.cs.brown.edu/~pff/segment/, by Felzenszwalb and Huttenlocher

http://www.cs.brown.edu/~pff/segment/


Predicate for segmentation

◼ Predicate D determines whether there is a boundary 
for segmentation.

Where 

◼ dif(C1 , C2 ) is the difference between two clusters. 

◼ in(C1 , C2 ) is the internal different in the clusters 
C1 and C2



Predicate for Segmentation

◼ Predicate D determines whether there 

is a boundary for segmentation. 

The different between two components is 

the minimum weight edge that connects a 

node vi in clusters C1 to node vj in C2



Predicate for Segmentation

◼ Predicate D determines whether 
there is a boundary for 
segmentation. 

In(C1, C2) is to the maximum weight 
edge that connects two nodes in the 
same component.



Predicate for Segmentation

◼ k/|C| sets the threshold by which the 
components need to be different from the 
internal nodes in a component. 

◼ Properties of constant k:
 If k is large, it causes a preference of larger objects. 

 k does not set a minimum size for components.



Turbo Pixels: Levinstein et al. 2009

http://www.cs.toronto.edu/~kyros/pubs/09.pami.turbopixels.pdf
Tries to preserve boundaries like watershed but to produce more regular regions

http://www.cs.toronto.edu/~kyros/pubs/09.pami.turbopixels.pdf


Turbo Pixels: Levinstein et al. 2009

http://www.cs.toronto.edu/~kyros/pubs/09.pami.turbopixels.pdf
Tries to preserve boundaries like watershed but to produce more regular regions

http://www.cs.toronto.edu/~kyros/pubs/09.pami.turbopixels.pdf


SLIC   (Achanta et al. PAMI 2012)

1. Initialize cluster centers on pixel 
grid in steps S

- Features: Lab color, x-y position

2. Move centers to position in 3x3 
window with smallest gradient

3. Compare each pixel to cluster 
center within 2S pixel distance and 
assign to nearest

4. Recompute cluster centers as 
mean color/position of pixels 
belonging to each cluster

5. Stop when residual error is small

http://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf

+ Fast 0.36s for 320x240

+ Regular superpixels

+ Superpixels fit boundaries

- May miss thin objects

- Large number of superpixels

http://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf


SLIC   (Achanta et al. PAMI 2012)
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SLIC   (Achanta et al. PAMI 2012)
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Today’s Class

◼ What are grouping problems in vision?

◼ Inspiration from human perception

 Gestalt properties

◼ Bottom-up segmentation via clustering
 Mode finding and mean shift: k-means, GMM, mean-shift

◼ Graph-based segmentation: Normalized Cut

◼ Oversegmentation
 Watershed algorithm, Felzenszwalb and Huttenlocher graph-

based etc.

◼ Multiple segmentation
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Multiple segmentations

◼ When creating regions for pixel classification or 
object detection, don’t commit to one partitioning

◼ Strategies:
 Hierarchical segmentation

◼ Occlusion boundaries hierarchy: Hoiem et al. IJCV 2011  
(uses trained classifier to merge)

◼ Pb+watershed hierarchy: Arbeleaz et al. CVPR 2009

◼ Selective search: FH + agglomerative clustering 

 Vary segmentation parameters
◼ E.g., multiple graph-based segmentations or mean-shift 

segmentations

 Region proposals
◼ Propose seed superpixel, try to segment out object that 

contains it (Endres Hoiem ECCV 2010, Carreira
Sminchisescu CVPR 2010)

http://www.eecs.berkeley.edu/~arbelaez/publications/Arbelaez_Maire_Fowlkes_Malik_CVPR2009.pdf
https://ivi.fnwi.uva.nl/isis/publications/2011/vandeSandeICCV2011/vandeSandeICCV2011.pdf


Pb+watershed hierarchy
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Pb+watershed hierarchy
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Pb+watershed hierarchy
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Pb+watershed hierarchy: Arbeleaz et al. CVPR 2009

http://www.eecs.berkeley.edu/~arbelaez/publications/Arbelaez_Maire_Fowlkes_Malik_CVPR2009.pdf


Pb+watershed hierarchy
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Pb+watershed hierarchy



Benchmark
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Benchmark
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Summary

◼ What are grouping problems in vision?

◼ Inspiration from human perception

 Gestalt properties

◼ Bottom-up segmentation via clustering
 Mode finding and mean shift: k-means, GMM, mean-shift

◼ Graph-based segmentation: Normalized Cut

◼ Oversegmentation
 Watershed algorithm, Felzenszwalb and Huttenlocher graph-

based

◼ Multiple segmentation
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Choices in segmentation algorithms

◼ Oversegmentation
 Watershed + Pb 

 Felzenszwalb and Huttenlocher 2004
http://www.cs.brown.edu/~pff/segment/

 SLIC  good recent option

 Turbopixels

 Mean-shift

◼ Larger regions
 Hierarchical segmentation (e.g., from Pb) 

 Normalized cuts

 Mean-shift

 Seed + graph cuts

http://www.cs.brown.edu/~pff/segment/


Things to remember

• Gestalt cues and principles of organization

• Uses of segmentation
– Efficiency

– Better features

– Propose object regions

– Want the segmented object

• Mean-shift segmentation
– Good general-purpose segmentation method 

– Generally useful clustering, tracking technique

• Normalized cuts
 Produces regular regions

 Slow but good for oversegmentation

• Watershed segmentation
– Good for hierarchical segmentation

– Use in combination with boundary prediction


