
计算机视觉表征与识别
Chapter 5: Edges

王利民

媒体计算课题组

http://mcg.nju.edu.cn/

1

Image pyramids

Shows the information added in

Gaussian pyramid at each spatial

scale. Useful for noise reduction &

coding.

Progressively blurred and

subsampled versions of the image.

Adds scale invariance to fixed-size

algorithms.

Shows components at each scale

and orientation separately. Non-

aliased subbands. Good for

texture and feature analysis.

◼ Gaussian

◼ Laplacian

◼ Steerable

pyramid

2

Linear Image Transforms

3

Image representation

• Pixels: great for spatial resolution, poor access

to frequency

• Fourier transform: great for frequency, not for

spatial information

• Pyramids/filter banks: balance between spatial

and frequency information

4

2021/4/20 5

6

7

8

What is texture?

◼ Texture is a phenomenon that is widespread,

easy to recognize, and hard to define.

◼ Views of large numbers of small objects

◼ Regular or stochastic patterns caused by

bumps, grooves, and/or markings

◼ Textures tend to show repetition: the same

local patch appears again and again.

9

Texture overview

10

http://en.wikipedia.org/wiki/File:Texture_spectrum.jpg

Why analyze texture?

Importance to perception:

◼ Often indicative of a material’s properties

◼ Can be important appearance cue, especially if

shape is similar across objects

◼ Aim to distinguish between shape, boundaries,

and texture

Technically:

◼ Representation-wise, we want a feature one

step above “building blocks” of filters, edges.

11

Texture-related tasks

◼ Shape from texture

 Estimate surface orientation or shape from image

texture

◼ Segmentation/classification from texture cues

 Analyze, represent texture

 Group image regions with consistent texture

◼ Synthesis

 Generate new texture patches/images given some

examples

12

Analysis vs. Synthesis

Images:Bill Freeman, A. Efros

13

Texture representation

◼ Textures are made up of repeated local

patterns, so:

 Find the patterns

◼ Use filters that look like patterns (spots, bars, raw

patches…)

◼ Consider magnitude of response

 Describe their statistics within each local window,

e.g.,

◼ Mean, standard deviation

◼ Histogram

◼ Histogram of “prototypical” feature occurrences

14

Filter banks

◼ Our previous example used two filters, and

resulted in a 2-dimensional feature vector to

describe texture in a window.

 x and y derivatives revealed something about local

structure.

◼ We can generalize to apply a collection of

multiple (d) filters: a “filter bank”

◼ Then our feature vectors will be d-dimensional.

 still can think of nearness, farness in feature space

15

Filter banks

◼ What filters to put in the bank?

 Typically we want a combination of scales and

orientations, different types of patterns.

Matlab code available for these examples:

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

scales

orientations

“Edges” “Bars”

“Spots”

16

2D Textons

◼ Goal: find canonical local features in a texture;

1) Filter image with linear filters:

2) Vector quantization (k-means) on filter outputs;

3) Quantization centers are the textons.

◼ Spatial distribution of textons defines the texture;

17

2D Textons (cont’d)

18

Texture/Material Representation

◼ Each material is now represented as a

spatial arrangement of symbols from the

texton vocabulary;

◼ Recognition：ignore spatial arrangement,

use histogram (K=100);

19

Similarity of materials

◼ Similarity between histograms measured

using chi-square difference:

å
= +

-
=

N

n nhnh

nhnh
hh

1 21

2

21
21

2

)()(

))()((
),(c

20

Texture synthesis

◼ Goal: create new samples of a given texture

◼ Many applications: virtual environments,

hole-filling, texturing surfaces

21

The Challenge

◼ Need to model the whole

spectrum: from repeated to

stochastic texture

repeated

stochastic

Both?

Alexei A. Efros and Thomas K. Leung, “Texture

Synthesis by Non-parametric Sampling,” Proc.

International Conference on Computer Vision (ICCV),

1999.

22

Synthesizing One Pixel

 What is ?

 Find all the windows in the image that match the neighborhood

 To synthesize x

◼ pick one matching window at random

◼ assign x to be the center pixel of that window

p

input image

synthesized image

23

p

Image Quilting [Efros & Freeman 2001]

◼ Observation: neighbor pixels are highly

correlated

Input image

non-parametric

sampling

B

Idea: unit of synthesis = block

• Exactly the same but now we want P(B|N(B))

• Much faster: synthesize all pixels in a block at once

Synthesizing a block

24

Today’s class

◼ Introduction to edge detection.

◼ Gradients and edges.

◼ Canny edge detector.

◼ Object contour.

◼ Pb edge detector.

◼ Recent advances in edge detection.

◼ Straight line detection

25

From texture to

edge/segmentation

26

Low level Vision Middle level Vision

From Pixels to Perception

Tiger
Grass

Water

Sand

Tiger

tail

eye

legs

head

back

shadow

mouth
Mid-level operations of

Segmentation and Grouping

27

Recognition, Reconstruction & Reorganization

Recognition

ReorganizationReconstruction

28

Figure / Ground
Finding groups of pixels that go together

(parts, objects, textures, holes)

29

Figure / Ground

30

http://twistedsifter.com/2015/03/mind-bending-optical-illusion-paintings-by-rob-gonsalves/

Figure / Ground

31

32

First problem: edge detection

◼ Goal: compute something like a line drawing of

a scene

33

Why

◼ Edges reflect intrinsic properties of a scene

 Capture shape information

 Independent of illumination

◼ Our human visual system does something like

this

◼ Good initial step for solving other problems

◼ Recognition, tracking, etc.

34

Why

◼ Extract information,

recognize objects

◼ Recover geometry and

viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)

35

Issues

◼ No precise problem formulation

◼ Much harder than it seems to be

◼ Edge detectors usually work by detecting “big

changes” in image intensity

◼ Boundary is contour in the image plane that

represents a change in pixel ownership from

object or surface to another.

36

Edge detection

◼ Goal: map image from 2d array of pixels to a set of

curves or line segments or contours.

◼ Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

37

Recall: How much light is recorded

◼ Major factors

 Illumination strength

and direction

 Surface geometry

 Surface material

 Nearby surfaces

 Camera gain/exposure

Light emitted

Sensor

Light reflected to

camera

38

What causes an edge?

Depth discontinuity:

object boundary

Change in surface

orientation: shape

Cast shadows

Reflectance change:

appearance

information, texture

Slide credit:

Kristen Grauman

39

Edges/gradients and invariance

Slide credit:

Kristen Grauman

40

Derivatives and edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Source: L. Lazebnik

An edge is a place of rapid change in the

image intensity function.

41

Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite

differences:

To implement above as convolution, what would be the

associated filter?

),(),(
lim

),(

0

yxfyxf

x

yxf −+
=

→

1

),(),1(),(yxfyxf

x

yxf −+

Slide credit: Kristen Grauman

42

Partial derivatives of an image

Which shows changes with respect to x?

-1

1

1

-1
or

?
-1 1

x

yxf

),(

y

yxf

),(

(showing filters for correlation)
43

Finite difference filters

◼ Other approximations of derivative filters exist:

Source: K. Grauman

44

Image gradient

The gradient of an image:

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Slide credit Steve Seitz

45

Effects of noise

46

Effects of noise

Consider a single row or column of the image

 Plotting intensity as a function of position gives a

signal

Where is the edge?

Slide credit Steve Seitz

47

Effects of noise

• Difference filters respond strongly to noise

 Image noise results in pixels that look very different

from their neighbors

 Generally, the larger the noise the stronger the

response

• What can we do about it?

Source: D. Forsyth

48

Where is the edge?

Solution: smooth first

Look for peaks in 49

Derivative theorem of convolution

Differentiation property of convolution.

Slide credit Steve Seitz

50

 11 −
0.0030 0.0133 0.0219 0.0133 0.0030

0.0133 0.0596 0.0983 0.0596 0.0133

0.0219 0.0983 0.1621 0.0983 0.0219

0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

)()(hgIhgI =

Derivative of Gaussian filters

51

Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik52

The Sobel Operator: A common

approximation of derivative of gaussian

53

Mask properties

◼ Smoothing
 Values positive

 Sum to 1 → constant regions same as input

 Amount of smoothing proportional to mask size

 Remove “high-frequency” components; “low-pass” filter

◼ Derivatives
 ___________ signs used to get high response in regions of

high contrast

 Sum to ___ → no response in constant regions

 High absolute value at points of high contrast

54

Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the

Gaussian kernel, and controls the amount of smoothing.

…

55

Effect of σ on derivatives

The apparent structures differ depending on

Gaussian’s scale parameter.

Larger values: larger scale edges detected

Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit:

Kristen Grauman

56

So, what scale to choose?
It depends what we’re looking for.

Slide credit: Kristen Grauman57

Laplacian of Gaussian

Consider

Laplacian of Gaussian

operator

Where is the edge? Zero-crossings of bottom graph
Slide credit: Steve Seitz

58

2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: Steve Seitz

59

Designing an edge detector

• Criteria for an “optimal” edge detector:
 Good detection: minimize the probability of false positives (detecting spurious

edges caused by noise), as well as that of false negatives (missing real edges)

 Good localization: must be as close as possible to the true edges

 Single response: the detector must return one point only for each true edge point;

60

61

62

Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast

3. Edge localization

Determine which local maxima from filter output are
actually edges vs. noise

Thresholding and thinning

63

Thresholding

◼ Choose a threshold value t

◼ Set any pixels less than t to

zero (off)

◼ Set any pixels greater than

or equal to t to one (on)

64

Original image

65

Gradient magnitude image

66

Lower threshold

67

Higher threshold

68

69

Canny edge detector

• This is probably the most widely used edge detector
in computer vision

• Theoretical model: step-edges corrupted by additive
Gaussian noise

• Canny has shown that the first derivative of the
Gaussian closely approximates the operator that
optimizes the product of signal-to-noise ratio and
localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.

Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

70

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4

Canny edge detector

◼ Filter image with derivative of Gaussian

◼ Find magnitude and orientation of gradient

◼ Non-maximum suppression:

 Thin wide “ridges” down to single pixel width

◼ Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and

the low threshold to continue them

◼ MATLAB: edge(image, ‘canny’);

◼ >>help edge

Source: D. Lowe, L. Fei-Fei

71

The Canny edge detector

original image (Lena)

Slide credit: Steve Seitz

72

The Canny edge detector

norm of the gradient

73

The Canny edge detector

thresholding

74

The Canny edge detector

thresholding

How to turn

these thick

regions of the

gradient into

curves?

75

Non-maximum suppression

Check if pixel is local maximum along gradient direction,

select single max across width of the edge

 requires checking interpolated pixels p and r

76

Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation
77

http://en.wikipedia.org/wiki/Bilinear_interpolation

Sidebar: Interpolation options

◼ imx2 = imresize(im, 2, interpolation_type)

◼ ‘nearest’
 Copy value from nearest known

 Very fast but creates blocky edges

◼ ‘bilinear’
 Weighted average from four nearest known

pixels

 Fast and reasonable results

◼ ‘bicubic’ (default)
 Non-linear smoothing over larger area

 Slower, visually appealing, may create negative
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

78

http://en.wikipedia.org/wiki/Bicubic_interpolation

Before non-max suppression

79

After non-max suppression

Problem:

pixels along

this edge

didn’t

survive the

thresholding

80

Hysteresis thresholding

◼ Threshold at low/high levels to get weak/strong edge pixels

◼ Do connected components, starting from strong edge

pixels

81

Closing edge gaps

◼ Check that maximum value of gradient value is

sufficiently large

 drop-outs? use hysteresis

◼ use a high threshold to start edge curves and a low threshold to

continue them.

G
ra

d
ie

nt
 m

a
g

ni
tu

d
e

t1

t2

Labeled as edge Pixel number in linked list

along gradient maxima

Not an edge

82

Hysteresis thresholding

Source: S. Seitz

strong edge

pixel

weak but

connected edge

pixels

strong edge

pixel

83

Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold

84

Final Canny Edges

85

Effect of (Gaussian kernel spread/size)

Canny with Canny with original

The choice of depends on desired behavior
• large detects large scale edges

• small detects fine features

86

Example: Canny Edge Detection

87

Example: Canny Edge Detection

88

Recap: Canny edge detector

◼ Filter image with derivative of Gaussian

◼ Find magnitude and orientation of gradient

◼ Non-maximum suppression:

 Thin wide “ridges” down to single pixel width

◼ Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and

the low threshold to continue them

◼ MATLAB: edge(image, ‘canny’);

◼ >>help edge

89

Background Texture Shadows

Low-level edges vs. perceived contours

90

91

Low-level edges vs. perceived contours

◼ Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

92

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Credit: David Martin
Berkeley Segmentation Data Set

David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik

93

94

95

96

A

B C

[D. Martin et al. PAMI 2004] Human-marked segment boundaries

Learn from

humans which

combination of

features is most

indicative of a

“good” contour?

97

98

99

100

[D. Martin et al. PAMI 2004]

What features are responsible for

perceived edges?

Feature profiles

(oriented energy,

brightness, color,

and texture

gradients) along

the patch’s

horizontal diameter

101

[D. Martin et al. PAMI 2004]

What features are responsible for

perceived edges?

Feature profiles

(oriented energy,

brightness, color,

and texture

gradients) along

the patch’s

horizontal diameter

102

Credit: David Martin
103

104

105

106

107

108

109

[D. Martin et al. PAMI 2004] Kristen Grauman, UT-Austin

110

Brightness

Color

Texture

Combined

Human

111

Results

Human (0.95)

Pb (0.88)

112

Results

Human

Pb

Human (0.96)

Global PbPb (0.88)

113

Human (0.95)

Pb (0.63)

114

Human (0.90)

Pb (0.35)

For more:

http://www.eecs.berkeley.edu/Research/Projects/CS/v

ision/bsds/bench/html/108082-color.html
115

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

116

117

Spectral Pb

Global pB boundary detector

118

Global pB boundary detector

119

120

121

122

123

Edge Detection with Structured

Random Forests

◼ Goal: quickly predict whether each
pixel is an edge

◼ Insights
 Predictions can be learned from training

data

 Predictions for nearby pixels should not
be independent

◼ Solution
 Train structured random forests to split

data into patches with similar boundaries
based on features

 Predict boundaries at patch level, rather
than pixel level, and aggregate (average
votes)

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Boundaries

in patch
124

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Edge Detection with Structured

Random Forests

◼ Algorithm

1. Extract overlapping 32x32

patches at three scales

2. Features are pixel values and

pairwise differences in feature

maps (LUV color, gradient

magnitude, oriented gradient)

3. Predict 𝑇 boundary maps in the

central 16x16 region using 𝑇
trained decision trees

4. Average predictions for each pixel

across all patches

125

126

127

Edge Detection with Structured

Random Forests

Results

BSDS 500 NYU Depth dataset edges

128

129

130

Holistically nested edge detection

https://arxiv.org/pdf/1504.06375.pdf131

https://arxiv.org/pdf/1504.06375.pdf

132

State of edge detection

◼ Local edge detection is mostly solved
 Intensity gradient, color, texture

 HED on BSDS 500 is near human performance

◼ Some room for improvement by taking advantage
of higher-level knowledge (e.g., objects)

◼ Still hard to produce all objects within a small
number of regions

133

Finding straight lines

134

Finding line segments using

connected components

1. Compute canny edges

– Compute: gx, gy (DoG in x,y directions)

– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:

– find connected components for edge pixels with directions in

{d-1, d, d+1}

4. Compute straightness and theta of edgelets using eig

of x,y 2nd moment matrix of their points

5. Threshold on straightness, store segment

() ()()
()() ()

−−−

−−−
=

2

2

yyx

yxx

yyx

yxx

M)eig(],[Μ=λv

))2,1(),2,2(2(atan vv=

12 /=conf

Larger eigenvector

135

Things to remember

◼ Canny edge detector = smooth →
derivative → thin → threshold → link

◼ Pb: learns weighting of gradient, color,
texture differences
 More recent learning approaches give at

least as good accuracy and are faster

◼ Straight line detector = canny +
gradient orientations → orientation
binning → linking → check for
straightness

136

