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Image pyramids

Shows the information added in 

Gaussian pyramid at each spatial 

scale.  Useful for noise reduction & 

coding.

Progressively blurred and 

subsampled versions of the image.  

Adds scale invariance to fixed-size 

algorithms.

Shows components at each scale 

and orientation separately.  Non-

aliased subbands.  Good for 

texture and feature analysis.  

◼ Gaussian

◼ Laplacian

◼ Steerable 

pyramid
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Linear Image Transforms
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Image representation

• Pixels: great for spatial resolution, poor access 

to frequency

• Fourier transform: great for frequency, not for 

spatial information

• Pyramids/filter banks: balance between spatial 

and frequency information
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What is texture?

◼ Texture is a phenomenon that is widespread, 

easy to recognize, and hard to define.

◼ Views of large numbers of small objects

◼ Regular or stochastic patterns caused by 

bumps, grooves, and/or markings

◼ Textures tend to show repetition: the same 

local patch appears again and again.
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Texture overview
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http://en.wikipedia.org/wiki/File:Texture_spectrum.jpg


Why analyze texture?

Importance to perception:

◼ Often indicative of a material’s properties

◼ Can be important appearance cue, especially if 

shape is similar across objects

◼ Aim to distinguish between shape, boundaries, 

and texture

Technically: 

◼ Representation-wise, we want a feature one 

step above “building blocks” of filters, edges.
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Texture-related tasks

◼ Shape from texture

 Estimate surface orientation or shape from image 

texture

◼ Segmentation/classification from texture cues

 Analyze, represent texture

 Group image regions with consistent texture

◼ Synthesis

 Generate new texture patches/images given some 

examples
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Analysis vs. Synthesis

Images:Bill Freeman, A. Efros
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Texture representation

◼ Textures are made up of repeated local 

patterns, so:

 Find the patterns

◼ Use filters that look like patterns (spots, bars, raw 

patches…)

◼ Consider magnitude of response

 Describe their statistics within each local window, 

e.g.,

◼ Mean, standard deviation

◼ Histogram

◼ Histogram of “prototypical” feature occurrences
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Filter banks

◼ Our previous example used two filters, and 

resulted in a 2-dimensional feature vector to 

describe texture in a window.

 x and y derivatives revealed something about local 

structure.

◼ We can generalize to apply a collection of 

multiple (d) filters: a “filter bank”

◼ Then our feature vectors will be d-dimensional.

 still can think of nearness, farness in feature space
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Filter banks

◼ What filters to put in the bank?

 Typically we want a combination of scales and 

orientations, different types of patterns.

Matlab code available for these examples: 

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

scales

orientations

“Edges” “Bars”

“Spots”
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2D Textons

◼ Goal: find canonical local features in a texture;

1) Filter image with linear filters:

2) Vector quantization (k-means) on filter outputs;

3) Quantization centers are the textons.

◼ Spatial distribution of textons defines the texture; 
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2D Textons (cont’d)
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Texture/Material Representation

◼ Each material is now represented as a 

spatial arrangement of symbols from the 

texton vocabulary;

◼ Recognition：ignore spatial arrangement, 

use histogram (K=100);
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Similarity of materials

◼ Similarity between histograms measured 

using chi-square difference:
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Texture synthesis

◼ Goal: create new samples of a given texture

◼ Many applications: virtual environments, 

hole-filling, texturing surfaces 
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The Challenge

◼ Need to model the whole 

spectrum: from repeated to 

stochastic texture

repeated

stochastic

Both?

Alexei A. Efros and Thomas K. Leung, “Texture 

Synthesis by Non-parametric Sampling,” Proc. 

International Conference on Computer Vision (ICCV), 

1999.
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Synthesizing One Pixel

 What is                                                                 ?

 Find all the windows in the image that match the neighborhood

 To synthesize x

◼ pick one matching window at random

◼ assign x to be the center pixel of that window

p

input image

synthesized image
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p

Image Quilting [Efros & Freeman 2001]

◼ Observation: neighbor pixels are highly 

correlated

Input image

non-parametric

sampling

B

Idea: unit of synthesis = block

• Exactly the same but now we want P(B|N(B))

• Much faster: synthesize all pixels in a block at once

Synthesizing a block
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Today’s class

◼ Introduction to edge detection.

◼ Gradients and edges.

◼ Canny edge detector.

◼ Object contour.

◼ Pb edge detector.

◼ Recent advances in edge detection.

◼ Straight line detection
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From texture to 

edge/segmentation
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Low level Vision Middle level Vision



From Pixels to Perception

Tiger
Grass

Water

Sand

Tiger

tail

eye

legs

head

back

shadow

mouth
Mid-level operations of 

Segmentation and Grouping
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Recognition, Reconstruction & Reorganization

Recognition

ReorganizationReconstruction
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Figure / Ground
Finding groups of pixels that go together 

(parts, objects, textures, holes)
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Figure / Ground
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http://twistedsifter.com/2015/03/mind-bending-optical-illusion-paintings-by-rob-gonsalves/

Figure / Ground
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First problem: edge detection

◼ Goal: compute something like a line drawing of 

a scene
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Why

◼ Edges reflect intrinsic properties of a scene

 Capture shape information

 Independent of illumination

◼ Our human visual system does something like 

this

◼ Good initial step for solving other problems

◼ Recognition, tracking, etc.
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Why

◼ Extract information, 

recognize objects

◼ Recover geometry and 

viewpoint

Vanishing
point

Vanishing
line

Vanishing
point

Vertical vanishing
point

(at infinity)
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Issues

◼ No precise problem formulation

◼ Much harder than it seems to be

◼ Edge detectors usually work by detecting “big 

changes” in image intensity

◼ Boundary is contour in the image plane that 

represents a change in pixel ownership from 

object or surface to another.
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Edge detection

◼ Goal: map image from 2d array of pixels to a set of 

curves or line segments or contours.

◼ Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007
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Recall: How much light is recorded

◼ Major factors

 Illumination strength 

and direction

 Surface geometry

 Surface material 

 Nearby surfaces

 Camera gain/exposure

Light emitted

Sensor

Light reflected to 

camera
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What causes an edge?

Depth discontinuity: 

object boundary

Change in surface 

orientation: shape

Cast shadows

Reflectance change: 

appearance 

information, texture

Slide credit: 

Kristen Grauman
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Edges/gradients and invariance

Slide credit: 

Kristen Grauman
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Derivatives and edges

image
intensity function

(along horizontal scanline) first derivative

edges correspond to

extrema of derivative

Source: L. Lazebnik

An edge is a place of rapid change in the 

image intensity function.
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Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

For discrete data, we can approximate using finite 

differences:

To implement above as convolution, what would be the 

associated filter?
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Slide credit: Kristen Grauman
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Partial derivatives of an image

Which shows changes with respect to x?
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Finite difference filters

◼ Other approximations of derivative filters exist:

Source: K. Grauman
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Image gradient

The gradient of an image: 

The gradient points in the direction of most rapid change in intensity

The gradient direction (orientation of edge normal) is given by:

The edge strength is given by the gradient magnitude

Slide credit Steve Seitz
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Effects of noise
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Effects of noise

Consider a single row or column of the image

 Plotting intensity as a function of position gives a 

signal

Where is the edge?

Slide credit Steve Seitz
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Effects of noise

• Difference filters respond strongly to noise

 Image noise results in pixels that look very different 

from their neighbors

 Generally, the larger the noise the stronger the 

response

• What can we do about it?

Source: D. Forsyth

48



Where is the edge?  

Solution:  smooth first

Look for peaks in 49



Derivative theorem of convolution

Differentiation property of convolution.

Slide credit Steve Seitz
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Derivative of Gaussian filters
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Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik52



The Sobel Operator: A common 

approximation of derivative of gaussian
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Mask properties

◼ Smoothing
 Values positive 

 Sum to 1 → constant regions same as input

 Amount of smoothing proportional to mask size

 Remove “high-frequency” components; “low-pass” filter

◼ Derivatives
 ___________ signs used to get high response in regions of 

high contrast

 Sum to ___ → no response in constant regions

 High absolute value at points of high contrast
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Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 

Gaussian kernel, and controls the amount of smoothing.

…
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Effect of σ on derivatives

The apparent structures differ depending on 

Gaussian’s scale parameter.

Larger values: larger scale edges detected

Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit: 

Kristen Grauman
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So, what scale to choose?
It depends what we’re looking for.

Slide credit: Kristen Grauman57



Laplacian of Gaussian

Consider  

Laplacian of Gaussian

operator

Where is the edge?  Zero-crossings of bottom graph
Slide credit: Steve Seitz
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2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: Steve Seitz
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Designing an edge detector

• Criteria for an “optimal” edge detector:
 Good detection: minimize the probability of false positives (detecting spurious 

edges caused by noise), as well as that of false negatives (missing real edges)

 Good localization: must be as close as possible to the true edges

 Single response: the detector must return one point only for each true edge point; 
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Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast

3. Edge localization

Determine which local maxima from filter output are 
actually edges vs. noise 

Thresholding and thinning
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Thresholding

◼ Choose a threshold value t

◼ Set any pixels less than t to 

zero (off)

◼ Set any pixels greater than 

or equal to t to one (on)
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Original image
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Gradient magnitude image
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Lower threshold

67



Higher threshold
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Canny edge detector

• This is probably the most widely used edge detector 
in computer vision

• Theoretical model: step-edges corrupted by additive 
Gaussian noise

• Canny has shown that the first derivative of the 
Gaussian closely approximates the operator that 
optimizes the product of signal-to-noise ratio and 
localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. 

Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 
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http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Canny edge detector

◼ Filter image with derivative of Gaussian 

◼ Find magnitude and orientation of gradient

◼ Non-maximum suppression:

 Thin wide “ridges” down to single pixel width

◼ Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and 

the low threshold to continue them

◼ MATLAB:   edge(image, ‘canny’);

◼ >>help edge

Source: D. Lowe, L. Fei-Fei
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The Canny edge detector

original image (Lena)

Slide credit: Steve Seitz
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The Canny edge detector

norm of the gradient
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The Canny edge detector

thresholding
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The Canny edge detector

thresholding

How to turn 

these thick 

regions of the 

gradient into 

curves?
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Non-maximum suppression

Check if pixel is local maximum along gradient direction, 

select single max across width of the edge

 requires checking interpolated pixels p and r
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Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation
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http://en.wikipedia.org/wiki/Bilinear_interpolation


Sidebar: Interpolation options

◼ imx2 = imresize(im, 2, interpolation_type)

◼ ‘nearest’ 
 Copy value from nearest known

 Very fast but creates blocky edges

◼ ‘bilinear’
 Weighted average from four nearest known 

pixels

 Fast and reasonable results

◼ ‘bicubic’ (default)
 Non-linear smoothing over larger area

 Slower, visually appealing, may create negative 
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation
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http://en.wikipedia.org/wiki/Bicubic_interpolation


Before non-max suppression
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After non-max suppression

Problem: 

pixels along 

this edge 

didn’t 

survive the 

thresholding
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Hysteresis thresholding

◼ Threshold at low/high levels to get weak/strong edge pixels

◼ Do connected components, starting from strong edge 

pixels
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Closing edge gaps

◼ Check that maximum value of gradient value is 

sufficiently large

 drop-outs?  use hysteresis

◼ use a high threshold to start edge curves and a low threshold to 

continue them.
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Labeled as edge Pixel number in linked list 

along gradient maxima

Not an edge
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Hysteresis thresholding

Source: S. Seitz

strong edge 

pixel

weak but 

connected edge 

pixels

strong edge 

pixel
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Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold
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Final Canny Edges
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Effect of  (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features
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Example: Canny Edge Detection
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Example: Canny Edge Detection
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Recap: Canny edge detector

◼ Filter image with derivative of Gaussian 

◼ Find magnitude and orientation of gradient

◼ Non-maximum suppression:

 Thin wide “ridges” down to single pixel width

◼ Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and 

the low threshold to continue them

◼ MATLAB:   edge(image, ‘canny’);

◼ >>help edge
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Background Texture Shadows

Low-level edges vs. perceived contours
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Low-level edges vs. perceived contours

◼ Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


Credit: David Martin
Berkeley Segmentation Data Set

David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik
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[D. Martin et al. PAMI 2004] Human-marked segment boundaries

Learn from 

humans which 

combination of 

features is most 

indicative of a 

“good” contour?
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[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 

(oriented energy, 

brightness, color, 

and texture 

gradients) along 

the patch’s 

horizontal diameter
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[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 

(oriented energy, 

brightness, color, 

and texture 

gradients) along 

the patch’s 

horizontal diameter
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Credit: David Martin
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[D. Martin et al. PAMI 2004] Kristen Grauman, UT-Austin
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Brightness

Color

Texture

Combined

Human
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Results

Human (0.95)

Pb (0.88)
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Results

Human

Pb

Human (0.96)

Global PbPb (0.88)
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Human (0.95)

Pb (0.63)
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Human (0.90)

Pb (0.35)

For more: 

http://www.eecs.berkeley.edu/Research/Projects/CS/v

ision/bsds/bench/html/108082-color.html
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Spectral Pb



Global pB boundary detector
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Global pB boundary detector
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Edge Detection with Structured 

Random Forests 

◼ Goal: quickly predict whether each 
pixel is an edge

◼ Insights
 Predictions can be learned from training 

data

 Predictions for nearby pixels should not 
be independent

◼ Solution
 Train structured random forests to split 

data into patches with similar boundaries 
based on features

 Predict boundaries at patch level, rather 
than pixel level, and aggregate (average 
votes)

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Boundaries 

in patch
124

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf


Edge Detection with Structured 

Random Forests

◼ Algorithm

1. Extract overlapping 32x32 

patches at three scales

2. Features are pixel values and 

pairwise differences in feature 

maps (LUV color, gradient 

magnitude, oriented gradient)

3. Predict 𝑇 boundary maps in the 

central 16x16 region using 𝑇
trained decision trees

4. Average predictions for each pixel 

across all patches
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Edge Detection with Structured 

Random Forests

Results

BSDS 500 NYU Depth dataset edges
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Holistically nested edge detection

https://arxiv.org/pdf/1504.06375.pdf131

https://arxiv.org/pdf/1504.06375.pdf
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State of edge detection

◼ Local edge detection is mostly solved
 Intensity gradient, color, texture 

 HED on BSDS 500 is near human performance

◼ Some room for improvement by taking advantage 
of higher-level knowledge (e.g., objects)

◼ Still hard to produce all objects within a small 
number of regions 
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Finding straight lines
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Finding line segments using 

connected components

1. Compute canny edges

– Compute: gx, gy (DoG in x,y directions)

– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:

– find connected components for edge pixels with directions in 

{d-1, d, d+1}

4. Compute straightness and theta of edgelets using eig

of x,y 2nd moment matrix of their points

5. Threshold on straightness, store segment
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Things to remember

◼ Canny edge detector =  smooth →
derivative → thin → threshold → link

◼ Pb: learns weighting of gradient, color,
texture differences
 More recent learning approaches give at

least as good accuracy and are faster

◼ Straight line detector =     canny + 
gradient orientations → orientation
binning → linking → check for
straightness
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