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Today’s class

◼ Introduction to edge detection.

◼ Gradients and edges.

◼ Canny edge detector.

◼ Object contour.

◼ Pb edge detector.

◼ Recent advances in edge detection.

◼ Straight line detection
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From Pixels to Perception
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Mid-level operations of 

Segmentation and Grouping
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First problem: edge detection

◼ Goal: compute something like a line drawing of 

a scene
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Issues

◼ No precise problem formulation

◼ Much harder than it seems to be

◼ Edge detectors usually work by detecting “big 

changes” in image intensity

◼ Boundary is contour in the image plane that 

represents a change in pixel ownership from 

object or surface to another.
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Edge detection

◼ Goal: map image from 2d array of pixels to a set of 

curves or line segments or contours.

◼ Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007
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What causes an edge?

Depth discontinuity: 

object boundary

Change in surface 

orientation: shape

Cast shadows

Reflectance change: 

appearance 

information, texture

Slide credit: 

Kristen Grauman
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Edges/gradients and invariance

Slide credit: 

Kristen Grauman
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Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik52



The Sobel Operator: A common 

approximation of derivative of gaussian

53



Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 

Gaussian kernel, and controls the amount of smoothing.

…
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Effect of σ on derivatives

The apparent structures differ depending on 

Gaussian’s scale parameter.

Larger values: larger scale edges detected

Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit: 

Kristen Grauman
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Laplacian of Gaussian

Consider  

Laplacian of Gaussian

operator

Where is the edge?  Zero-crossings of bottom graph
Slide credit: Steve Seitz
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2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: Steve Seitz
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Designing an edge detector

• Criteria for an “optimal” edge detector:
 Good detection: minimize the probability of false positives (detecting spurious 

edges caused by noise), as well as that of false negatives (missing real edges)

 Good localization: must be as close as possible to the true edges

 Single response: the detector must return one point only for each true edge point; 

60



62



Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast

3. Edge localization

Determine which local maxima from filter output are 
actually edges vs. noise 

Thresholding and thinning
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Canny edge detector

• This is probably the most widely used edge detector 
in computer vision

• Theoretical model: step-edges corrupted by additive 
Gaussian noise

• Canny has shown that the first derivative of the 
Gaussian closely approximates the operator that 
optimizes the product of signal-to-noise ratio and 
localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. 

Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 
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Canny edge detector

◼ Filter image with derivative of Gaussian 

◼ Find magnitude and orientation of gradient

◼ Non-maximum suppression:

 Thin wide “ridges” down to single pixel width

◼ Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and 

the low threshold to continue them

◼ MATLAB:   edge(image, ‘canny’);

◼ >>help edge

Source: D. Lowe, L. Fei-Fei
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The Canny edge detector

original image (Lena)

Slide credit: Steve Seitz
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The Canny edge detector

norm of the gradient
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The Canny edge detector

thresholding
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The Canny edge detector

thresholding

How to turn 

these thick 

regions of the 

gradient into 

curves?
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Non-maximum suppression

Check if pixel is local maximum along gradient direction, 

select single max across width of the edge

 requires checking interpolated pixels p and r
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Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation
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Sidebar: Interpolation options

◼ imx2 = imresize(im, 2, interpolation_type)

◼ ‘nearest’ 
 Copy value from nearest known

 Very fast but creates blocky edges

◼ ‘bilinear’
 Weighted average from four nearest known 

pixels

 Fast and reasonable results

◼ ‘bicubic’ (default)
 Non-linear smoothing over larger area

 Slower, visually appealing, may create negative 
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

78

http://en.wikipedia.org/wiki/Bicubic_interpolation


Before non-max suppression
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After non-max suppression

Problem: 

pixels along 

this edge 

didn’t 

survive the 

thresholding
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Hysteresis thresholding

◼ Threshold at low/high levels to get weak/strong edge pixels

◼ Do connected components, starting from strong edge 

pixels
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Closing edge gaps

◼ Check that maximum value of gradient value is 

sufficiently large

 drop-outs?  use hysteresis

◼ use a high threshold to start edge curves and a low threshold to 

continue them.
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along gradient maxima

Not an edge
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Hysteresis thresholding

Source: S. Seitz

strong edge 

pixel

weak but 

connected edge 

pixels

strong edge 

pixel
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Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold
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Final Canny Edges
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Effect of  (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features
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Example: Canny Edge Detection

87



Example: Canny Edge Detection
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Background Texture Shadows

Low-level edges vs. perceived contours
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Low-level edges vs. perceived contours

◼ Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Berkeley Segmentation Data Set

David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik
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Annotation tool
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Segmentation Error Measure

◼ A segmentation is a division of the pixels an 

image into sets.

◼ A segmentation error takes two segmentations

as input and produces a real-valued output.

◼ We define a measure error at each pixel that is 

tolerant to refinement.
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GCE vs. LCE
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A

B C



Error Measure Validation
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Dataset Summary

• 30 subjects, age 19-23

– 17 men, 13 women

– 9 with artistic training

• 8 months

• 1,458 person hours

• 1,020 Corel images

• 11,595 Segmentations

– 5,555 color, 5,554 gray, 486 inverted/negated
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[D. Martin et al. PAMI 2004] Human-marked segment boundaries

Learn from 

humans which 

combination of 

features is most 

indicative of a 

“good” contour?
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[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 

(oriented energy, 

brightness, color, 

and texture 

gradients) along 

the patch’s 

horizontal diameter
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[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 

(oriented energy, 

brightness, color, 

and texture 

gradients) along 

the patch’s 

horizontal diameter
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Boundaries of image regions 

defined by a number of cues

 Brightness

 Color

 Texture

 Motion (in video)

 Binocular Diparity (if available)

 Familiar objects
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Brightness and Color Features

• 1976 CIE L*a*b* colorspace

• Brightness Gradient BG(x,y,r,) 

– 2 difference in L* distribution

• Color Gradient CG(x,y,r,)

– 2 difference in a* and b* 

distributions
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Texture Feature

• Texture Gradient TG(x,y,r,)

– 2 difference of texton histograms

– Textons are vector-quantized filter outputs

Texton
Map
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Non-Boundaries Boundaries

TG

TG
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(1) Fit cylindrical parabolas to raw oriented 

signal to get local shape: (Savitsky-Golay) 

(2) Localize peaks:

Boundary Localization
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Cue Combination Models

• Classification Trees

– Top-down splits to maximize entropy, error bounded

• Density Estimation

– Adaptive bins using k-means

• Logistic Regression, 3 variants

– Linear and quadratic terms

– Confidence-rated generalization of AdaBoost (Schapire&Singer)

• Hierarchical Mixtures of Experts (Jordan&Jacobs)

– Up to 8 experts, initialized top-down, fit with EM

• Support Vector Machines (libsvm, Chang&Lin)

– Gaussian kernel, -parameterization

➢ Range over bias, complexity, parametric/non-parametric
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Computing Precision/Recall

Recall = Pr(signal|truth) = fraction of ground truth found by the signal

Precision = Pr(truth|signal) = fraction of signal that is correct

• Always a trade-off between the two

• Standard measures in information retrieval (van Rijsbergen XX)

• ROC from standard signal detection the wrong approach

Strategy

• Detector output (Pb) is a soft boundary map

• Compute precision/recall curve:

– Threshold Pb at many points t in [0,1]

– Recall = Pr(Pb>t|seg=1)

– Precision = Pr(seg=1|Pb>t)
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ROC vs. 

Precision/Recall
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Classifier

Comparison Goal

More

Noise

More

Signal
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Cue Calibration

➢All free parameters optimized on training data

➢All algorithmic alternatives evaluated by 
experiment

• Brightness Gradient

– Scale, bin/kernel sizes for KDE

• Color Gradient

– Scale, bin/kernel sizes for KDE, joint vs. marginals

• Texture Gradient

– Filter bank: scale, multiscale?

– Histogram comparison: L1, L2, L, 2, EMD

– Number of textons, Image-specific vs. universal textons

• Localization parameters for each cue



126



127

Classifier

Comparison



128



129

Alternate Approaches

• Canny Detector

– Canny 1986

– MATLAB implementation

– With and without hysteresis

• Second Moment Matrix

– Nitzberg/Mumford/Shiota 1993

– cf. Förstner and Harris corner detectors

– Used by Konishi et al. 1999 in learning framework

– Logistic model trained on full eigenspectrum
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Pb Images
Canny 2MM Us HumanImage
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Pb Images II
Canny 2MM Us HumanImage
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Pb Images III
Canny 2MM Us HumanImage
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Two Decades 

of Boundary 

Detection
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Findings

1. A simple linear model is sufficient for cue 
combination

– All cues weighted approximately equally in logistic

2. Proper texture edge model is not optional for 
complex natural images

– Texture suppression is not sufficient!

3. Significant improvement over state-of-the-art in 
boundary detection

– Pb(x,y,) useful for higher-level processing

4. Empirical approach critical for both cue 
calibration and cue combination



[D. Martin et al. PAMI 2004] Kristen Grauman, UT-Austin
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Brightness

Color

Texture

Combined

Human

136



Results

Human (0.95)

Pb (0.88)
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Results

Human

Pb

Human (0.96)

Global PbPb (0.88)
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Human (0.95)

Pb (0.63)
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Human (0.90)

Pb (0.35)

For more: 

http://www.eecs.berkeley.edu/Research/Projects/CS/v

ision/bsds/bench/html/108082-color.html
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Exploiting global constraints:
Image Segmentation as Graph Partitioning

Build a weighted graph G=(V,E) from image

V: image pixels

E: connections between 

pairs of nearby pixels

Partition graph so that similarity within group is large and 

similarity between groups is small -- Normalized Cuts

[Shi & Malik 97]



143

Wij  small when intervening contour strong, small when weak..

Cij =  max Pb(x,y) for  (x,y)  on line segment ij;     Wij = exp ( - Cij /  
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Spectral Pb



Global pB boundary detector
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Contour Detection

◼ Local and Global cues combination
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Global pB boundary detector
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Edge Detection with Structured 

Random Forests 

◼ Goal: quickly predict whether each 
pixel is an edge

◼ Insights
 Predictions can be learned from training 

data

 Predictions for nearby pixels should not 
be independent

◼ Solution
 Train structured random forests to split 

data into patches with similar boundaries 
based on features

 Predict boundaries at patch level, rather 
than pixel level, and aggregate (average 
votes)

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Boundaries 

in patch
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Edge Detection with Structured 

Random Forests

◼ Algorithm

1. Extract overlapping 32x32 

patches at three scales

2. Features are pixel values and 

pairwise differences in feature 

maps (LUV color, gradient 

magnitude, oriented gradient)

3. Predict 𝑇 boundary maps in the 

central 16x16 region using 𝑇
trained decision trees

4. Average predictions for each pixel 

across all patches
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Standard Decision Tree Learning
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General Information Gain
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Edge Detection with Structured 

Random Forests

Results

BSDS 500 NYU Depth dataset edges
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Holistically nested edge detection

https://arxiv.org/pdf/1504.06375.pdf160

https://arxiv.org/pdf/1504.06375.pdf
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State of edge detection

◼ Local edge detection is mostly solved
 Intensity gradient, color, texture 

 HED on BSDS 500 is near human performance

◼ Some room for improvement by taking advantage 
of higher-level knowledge (e.g., objects)

◼ Still hard to produce all objects within a small 
number of regions 
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Finding straight lines
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Finding line segments using 

connected components

1. Compute canny edges

– Compute: gx, gy (DoG in x,y directions)

– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:

– find connected components for edge pixels with directions in 

{d-1, d, d+1}

4. Compute straightness and theta of edgelets using eig

of x,y 2nd moment matrix of their points

5. Threshold on straightness, store segment
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Things to remember

◼ Canny edge detector =            smooth →
derivative → thin → threshold → link

◼ Pb: learns weighting of gradient, color, 
texture differences
 More recent learning approaches give at 

least as good accuracy and are faster

◼ Straight line detector =               canny + 
gradient orientations → orientation 
binning → linking → check for 
straightness
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