
计算机视觉表征与识别
Chapter 5: Edges

王利民

媒体计算课题组

http://mcg.nju.edu.cn/

1



Today’s class

◼ Introduction to edge detection.

◼ Gradients and edges.

◼ Canny edge detector.

◼ Object contour.

◼ Pb edge detector.

◼ Recent advances in edge detection.

◼ Straight line detection

25



From Pixels to Perception

Tiger
Grass

Water

Sand

Tiger

tail

eye

legs

head

back

shadow

mouth
Mid-level operations of 

Segmentation and Grouping

27



First problem: edge detection

◼ Goal: compute something like a line drawing of 

a scene

33



Issues

◼ No precise problem formulation

◼ Much harder than it seems to be

◼ Edge detectors usually work by detecting “big 

changes” in image intensity

◼ Boundary is contour in the image plane that 

represents a change in pixel ownership from 

object or surface to another.

36



Edge detection

◼ Goal: map image from 2d array of pixels to a set of 

curves or line segments or contours.

◼ Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

37



What causes an edge?

Depth discontinuity: 

object boundary

Change in surface 

orientation: shape

Cast shadows

Reflectance change: 

appearance 

information, texture

Slide credit: 

Kristen Grauman

39



Edges/gradients and invariance

Slide credit: 

Kristen Grauman

40



Derivative of Gaussian filters

x-direction y-direction

Source: L. Lazebnik52



The Sobel Operator: A common 

approximation of derivative of gaussian

53



Smoothing with a Gaussian

Recall: parameter σ is the “scale” / “width” / “spread” of the 

Gaussian kernel, and controls the amount of smoothing.

…

55



Effect of σ on derivatives

The apparent structures differ depending on 

Gaussian’s scale parameter.

Larger values: larger scale edges detected

Smaller values: finer features detected

σ = 1 pixel σ = 3 pixels

Slide credit: 

Kristen Grauman

56



Laplacian of Gaussian

Consider  

Laplacian of Gaussian

operator

Where is the edge?  Zero-crossings of bottom graph
Slide credit: Steve Seitz

58



2D edge detection filters

• is the Laplacian operator:

Laplacian of Gaussian

Gaussian derivative of Gaussian

Slide credit: Steve Seitz

59



Designing an edge detector

• Criteria for an “optimal” edge detector:
 Good detection: minimize the probability of false positives (detecting spurious 

edges caused by noise), as well as that of false negatives (missing real edges)

 Good localization: must be as close as possible to the true edges

 Single response: the detector must return one point only for each true edge point; 

60



62



Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast

3. Edge localization

Determine which local maxima from filter output are 
actually edges vs. noise 

Thresholding and thinning

63



69



Canny edge detector

• This is probably the most widely used edge detector 
in computer vision

• Theoretical model: step-edges corrupted by additive 
Gaussian noise

• Canny has shown that the first derivative of the 
Gaussian closely approximates the operator that 
optimizes the product of signal-to-noise ratio and 
localization

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. 

Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

70

http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=4767846&arnumber=4767851&count=16&index=4


Canny edge detector

◼ Filter image with derivative of Gaussian 

◼ Find magnitude and orientation of gradient

◼ Non-maximum suppression:

 Thin wide “ridges” down to single pixel width

◼ Linking and thresholding (hysteresis):

 Define two thresholds: low and high

 Use the high threshold to start edge curves and 

the low threshold to continue them

◼ MATLAB:   edge(image, ‘canny’);

◼ >>help edge

Source: D. Lowe, L. Fei-Fei

71



The Canny edge detector

original image (Lena)

Slide credit: Steve Seitz

72



The Canny edge detector

norm of the gradient

73



The Canny edge detector

thresholding

74



The Canny edge detector

thresholding

How to turn 

these thick 

regions of the 

gradient into 

curves?

75



Non-maximum suppression

Check if pixel is local maximum along gradient direction, 

select single max across width of the edge

 requires checking interpolated pixels p and r

76



Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation
77

http://en.wikipedia.org/wiki/Bilinear_interpolation


Sidebar: Interpolation options

◼ imx2 = imresize(im, 2, interpolation_type)

◼ ‘nearest’ 
 Copy value from nearest known

 Very fast but creates blocky edges

◼ ‘bilinear’
 Weighted average from four nearest known 

pixels

 Fast and reasonable results

◼ ‘bicubic’ (default)
 Non-linear smoothing over larger area

 Slower, visually appealing, may create negative 
pixel values

Examples from http://en.wikipedia.org/wiki/Bicubic_interpolation

78

http://en.wikipedia.org/wiki/Bicubic_interpolation


Before non-max suppression

79



After non-max suppression

Problem: 

pixels along 

this edge 

didn’t 

survive the 

thresholding

80



Hysteresis thresholding

◼ Threshold at low/high levels to get weak/strong edge pixels

◼ Do connected components, starting from strong edge 

pixels

81



Closing edge gaps

◼ Check that maximum value of gradient value is 

sufficiently large

 drop-outs?  use hysteresis

◼ use a high threshold to start edge curves and a low threshold to 

continue them.

G
ra

d
ie

nt
 m

a
g

ni
tu

d
e

t1

t2

Labeled as edge Pixel number in linked list 

along gradient maxima

Not an edge

82



Hysteresis thresholding

Source: S. Seitz

strong edge 

pixel

weak but 

connected edge 

pixels

strong edge 

pixel

83



Hysteresis thresholding

original image

high threshold

(strong edges)

low threshold

(weak edges)

hysteresis threshold

84



Final Canny Edges

85



Effect of  (Gaussian kernel spread/size)

Canny with Canny with original 

The choice of  depends on desired behavior
• large  detects large scale edges

• small  detects fine features

86



Example: Canny Edge Detection

87



Example: Canny Edge Detection

88



Background Texture Shadows

Low-level edges vs. perceived contours

90



91



Low-level edges vs. perceived contours

◼ Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

92

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/


93



94



Berkeley Segmentation Data Set

David Martin, Charless Fowlkes, Doron Tal, Jitendra Malik

95



Annotation tool

96



97



98



Segmentation Error Measure

◼ A segmentation is a division of the pixels an 

image into sets.

◼ A segmentation error takes two segmentations

as input and produces a real-valued output.

◼ We define a measure error at each pixel that is 

tolerant to refinement.

99



GCE vs. LCE

100



101

A

B C



Error Measure Validation

102



103



104

Dataset Summary

• 30 subjects, age 19-23

– 17 men, 13 women

– 9 with artistic training

• 8 months

• 1,458 person hours

• 1,020 Corel images

• 11,595 Segmentations

– 5,555 color, 5,554 gray, 486 inverted/negated



105



[D. Martin et al. PAMI 2004] Human-marked segment boundaries

Learn from 

humans which 

combination of 

features is most 

indicative of a 

“good” contour?

106



[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 

(oriented energy, 

brightness, color, 

and texture 

gradients) along 

the patch’s 

horizontal diameter

107



[D. Martin et al. PAMI 2004]

What features are responsible for 

perceived edges?

Feature profiles 

(oriented energy, 

brightness, color, 

and texture 

gradients) along 

the patch’s 

horizontal diameter

108



109



110

Boundaries of image regions 

defined by a number of cues

 Brightness

 Color

 Texture

 Motion (in video)

 Binocular Diparity (if available)

 Familiar objects



111



112



113

Brightness and Color Features

• 1976 CIE L*a*b* colorspace

• Brightness Gradient BG(x,y,r,) 

– 2 difference in L* distribution

• Color Gradient CG(x,y,r,)

– 2 difference in a* and b* 

distributions


+

−
=

i ii

ii

hg

hg
hg

2
2 )(

2

1
),(



r

(x,y)



114

Texture Feature

• Texture Gradient TG(x,y,r,)

– 2 difference of texton histograms

– Textons are vector-quantized filter outputs

Texton
Map



119

Non-Boundaries Boundaries

TG

TG















+

−
=

f

f
ff
~ˆ

(1) Fit cylindrical parabolas to raw oriented 

signal to get local shape: (Savitsky-Golay) 

(2) Localize peaks:

Boundary Localization



120

Non-Boundaries Boundaries

I

T

B

C



121

Cue Combination Models

• Classification Trees

– Top-down splits to maximize entropy, error bounded

• Density Estimation

– Adaptive bins using k-means

• Logistic Regression, 3 variants

– Linear and quadratic terms

– Confidence-rated generalization of AdaBoost (Schapire&Singer)

• Hierarchical Mixtures of Experts (Jordan&Jacobs)

– Up to 8 experts, initialized top-down, fit with EM

• Support Vector Machines (libsvm, Chang&Lin)

– Gaussian kernel, -parameterization

➢ Range over bias, complexity, parametric/non-parametric



122

Computing Precision/Recall

Recall = Pr(signal|truth) = fraction of ground truth found by the signal

Precision = Pr(truth|signal) = fraction of signal that is correct

• Always a trade-off between the two

• Standard measures in information retrieval (van Rijsbergen XX)

• ROC from standard signal detection the wrong approach

Strategy

• Detector output (Pb) is a soft boundary map

• Compute precision/recall curve:

– Threshold Pb at many points t in [0,1]

– Recall = Pr(Pb>t|seg=1)

– Precision = Pr(seg=1|Pb>t)



123

ROC vs. 

Precision/Recall

S
ig

n
al

Truth

P N

P TP FP

N FN TN

ROC Curve

Hit Rate = TP / (TP+FN) =

False Alarm Rate = FP / (FP+TN) =

PR Curve

Precision = TP / (TP+FP) =

Recall = TP / (TP+FN) =

/

/

/

/









+
=

rp

pr

t
F

2
max



124

Classifier

Comparison Goal

More

Noise

More

Signal



125

Cue Calibration

➢All free parameters optimized on training data

➢All algorithmic alternatives evaluated by 
experiment

• Brightness Gradient

– Scale, bin/kernel sizes for KDE

• Color Gradient

– Scale, bin/kernel sizes for KDE, joint vs. marginals

• Texture Gradient

– Filter bank: scale, multiscale?

– Histogram comparison: L1, L2, L, 2, EMD

– Number of textons, Image-specific vs. universal textons

• Localization parameters for each cue



126



127

Classifier

Comparison



128



129

Alternate Approaches

• Canny Detector

– Canny 1986

– MATLAB implementation

– With and without hysteresis

• Second Moment Matrix

– Nitzberg/Mumford/Shiota 1993

– cf. Förstner and Harris corner detectors

– Used by Konishi et al. 1999 in learning framework

– Logistic model trained on full eigenspectrum



130

Pb Images
Canny 2MM Us HumanImage



131

Pb Images II
Canny 2MM Us HumanImage



132

Pb Images III
Canny 2MM Us HumanImage



133

Two Decades 

of Boundary 

Detection



134

Findings

1. A simple linear model is sufficient for cue 
combination

– All cues weighted approximately equally in logistic

2. Proper texture edge model is not optional for 
complex natural images

– Texture suppression is not sufficient!

3. Significant improvement over state-of-the-art in 
boundary detection

– Pb(x,y,) useful for higher-level processing

4. Empirical approach critical for both cue 
calibration and cue combination



[D. Martin et al. PAMI 2004] Kristen Grauman, UT-Austin

135



Brightness

Color

Texture

Combined

Human

136



Results

Human (0.95)

Pb (0.88)

137



Results

Human

Pb

Human (0.96)

Global PbPb (0.88)

138



Human (0.95)

Pb (0.63)

139



Human (0.90)

Pb (0.35)

For more: 

http://www.eecs.berkeley.edu/Research/Projects/CS/v

ision/bsds/bench/html/108082-color.html
140

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html


141



142

Exploiting global constraints:
Image Segmentation as Graph Partitioning

Build a weighted graph G=(V,E) from image

V: image pixels

E: connections between 

pairs of nearby pixels

Partition graph so that similarity within group is large and 

similarity between groups is small -- Normalized Cuts

[Shi & Malik 97]



143

Wij  small when intervening contour strong, small when weak..

Cij =  max Pb(x,y) for  (x,y)  on line segment ij;     Wij = exp ( - Cij /  



144

Spectral Pb



Global pB boundary detector

145



Contour Detection

◼ Local and Global cues combination

146



Global pB boundary detector

147



148



149



150



151



Edge Detection with Structured 

Random Forests 

◼ Goal: quickly predict whether each 
pixel is an edge

◼ Insights
 Predictions can be learned from training 

data

 Predictions for nearby pixels should not 
be independent

◼ Solution
 Train structured random forests to split 

data into patches with similar boundaries 
based on features

 Predict boundaries at patch level, rather 
than pixel level, and aggregate (average 
votes)

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf

Boundaries 

in patch
152

http://research.microsoft.com/pubs/202540/DollarICCV13edges.pdf


Edge Detection with Structured 

Random Forests

◼ Algorithm

1. Extract overlapping 32x32 

patches at three scales

2. Features are pixel values and 

pairwise differences in feature 

maps (LUV color, gradient 

magnitude, oriented gradient)

3. Predict 𝑇 boundary maps in the 

central 16x16 region using 𝑇
trained decision trees

4. Average predictions for each pixel 

across all patches

153



Standard Decision Tree Learning

154



155

General Information Gain



156



Edge Detection with Structured 

Random Forests

Results

BSDS 500 NYU Depth dataset edges

157



158



159



Holistically nested edge detection

https://arxiv.org/pdf/1504.06375.pdf160

https://arxiv.org/pdf/1504.06375.pdf


161



State of edge detection

◼ Local edge detection is mostly solved
 Intensity gradient, color, texture 

 HED on BSDS 500 is near human performance

◼ Some room for improvement by taking advantage 
of higher-level knowledge (e.g., objects)

◼ Still hard to produce all objects within a small 
number of regions 

162



Finding straight lines

163



Finding line segments using 

connected components

1. Compute canny edges

– Compute: gx, gy (DoG in x,y directions)

– Compute: theta = atan(gy / gx)

2. Assign each edge to one of 8 directions

3. For each direction d, get edgelets:

– find connected components for edge pixels with directions in 

{d-1, d, d+1}

4. Compute straightness and theta of edgelets using eig

of x,y 2nd moment matrix of their points

5. Threshold on straightness, store segment

( ) ( )( )
( )( ) ( ) 












−−−

−−−
=




2

2

yyx

yxx

yyx

yxx




M )eig(],[ Μ=λv

))2,1(),2,2(2(atan vv=

12 / =conf

Larger eigenvector

164



Things to remember

◼ Canny edge detector =            smooth →
derivative → thin → threshold → link

◼ Pb: learns weighting of gradient, color, 
texture differences
 More recent learning approaches give at 

least as good accuracy and are faster

◼ Straight line detector =               canny + 
gradient orientations → orientation 
binning → linking → check for 
straightness

165


