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Image filtering

◼ Compute a function of the local neighborhood at 

each pixel in the image

 Function specified by a “filter” or mask saying how to 

combine values from neighbors.

◼ Uses of filtering:

 Enhance an image (denoise, resize, etc)

 Extract information (texture, edges, etc)

 Detect patterns (template matching)



Three views of filtering

◼ Image filters in spatial domain
 Filter is a mathematical operation on values of each patch

 Smoothing, sharpening, measuring texture

◼ Image filters in the frequency domain
 Filtering is a way to modify the frequencies of images

 Denoising, sampling, image compression

◼ Templates and Image Pyramids
 Filtering is a way to match a template to the image

 Detection, coarse-to-fine registration
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Log Magnitude

Strong Vertical Frequency

(Sharp Horizontal Edge)

Strong Horz. Frequency

(Sharp Vert. Edge)

Diagonal Frequencies

Low Frequencies



The Convolution Theorem

◼ The Fourier transform of the convolution of two 
functions is the product of their Fourier transforms

◼ The inverse Fourier transform of the product of two 
Fourier transforms is the convolution of the two 
inverse Fourier transforms

◼ Convolution in spatial domain is equivalent to 
multiplication in frequency domain!
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Filtering in spatial domain
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Filtering in frequency domain

FFT

FFT

Inverse FFT
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Why does the Gaussian give a nice smooth 

image, but the square filter give edgy artifacts?
Gaussian Box filter



Gaussian Filter



Box Filter



Why does a lower resolution image still make 

sense to us?  What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/ 

Sampling

http://www.flickr.com/photos/igorms/136916757/


Fourier Interpretation: Sampling
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Fourier Interpretation: Sampling
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Fourier Interpretation: Sampling
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Fourier Interpretation: Sampling
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Sampling and aliasing



Anti-aliasing

Solutions:

◼ Sample more often

◼ Get rid of all frequencies that are greater than 

half the new sampling frequency

 Will lose information

 But it’s better than aliasing

 Apply a smoothing filter



Anti-aliasing



Three views of filtering

◼ Image filters in spatial domain
 Filter is a mathematical operation on values of each patch

 Smoothing, sharpening, measuring texture

◼ Image filters in the frequency domain
 Filtering is a way to modify the frequencies of images

 Denoising, sampling, image compression

◼ Templates and Image Pyramids
 Filtering is a way to match a template to the image

 Detection, coarse-to-fine registration



Today’s class

◼ Template matching

◼ Gaussian Pyramids
 Application for recognition

 Pyramids representation in deep learning

◼ Laplacian Pyramids
 Application for image blending

 Hybrid images

◼ Steerable pyramids：
 Filter banks and texture analysis



Template matching

◼ Goal: find       in image

◼ Main challenge: What is 
a good similarity or 
distance measure 
between two patches?
 Correlation

 Zero-mean correlation

 Sum Square Difference

 Normalized Cross 
Correlation



Matching with filters

◼ Goal: find       in image

◼ Method 0: filter the image with eye patch

Input Filtered Image
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What went wrong?

f = image

g = filter



Matching with filters

◼ Goal: find       in image

◼ Method 1: filter the image with zero-mean eye

Input Filtered Image (scaled) Thresholded Image
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,
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True detections

False 

detections

mean of template g



Matching with filters

◼ Goal: find       in image

◼ Method 2: SSD

Input 1- sqrt(SSD) Thresholded Image
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True detections



Matching with filters

Can SSD be implemented with linear filters?
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Matching with filters

◼ Goal: find       in image

◼ Method 2: SSD

Input 1- sqrt(SSD)

2

,
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++−=

What’s the potential downside 

of SSD?



Matching with filters

◼ Goal: find       in image

◼ Method 3: Normalized cross-correlation

Matlab: normxcorr2(template, im)

mean image patchmean template
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Matching with filters

◼ Goal: find       in image

◼ Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



Matching with filters

◼ Goal: find       in image

◼ Method 3: Normalized cross-correlation

Input Normalized X-Correlation Thresholded Image

True detections



Q: What is the best method to use?

A: Depends

◼ Zero-mean filter: fastest but not a great 

matcher

◼ SSD: next fastest, sensitive to overall intensity

◼ Normalized cross-correlation: slowest, invariant 

to local average intensity and contrast



Today’s class

◼ Template matching

◼ Gaussian Pyramids
 Application for recognition

 Pyramids representation in deep learning

◼ Laplacian Pyramids
 Application for image blending

 Hybrid images

◼ Steerable pyramids：
 filter banks and texture analysis



Translation invariance
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We need translation and 

scale invariance

2021/4/6 53



Image pyramids
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Throw away every other row and column 

to create a 1/2 size image

Subsampling by a factor of 2



Recall: sampling

Low-Pass 

Filtered Image
Image

Gaussian

Filter Sample
Low-Res 

Image



2021/4/6 57



Image pyramids

◼ Gaussian pyramid

 Application for recognition

◼ Laplacian pyramid

 Application for image blending
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Gaussian Pyramid



Gaussian Pyramid
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Downsampling & Upsampling
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Gaussian Pyramid
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Gaussian pyramids used for

◼ Up or down sample images

◼ Multi-resolution image analysis

 Look for an object over various spatial scales

 Coarse-to-fine image regestration: form blur 

estimate or the motion analysis on very low-

resolution image, upsample and repeat

 Often a successful strategy for avoiding local 

minima in complicated estimation tasks
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Coarse-to-fine Image 

Registration

1. Compute Gaussian pyramid

2. Align with coarse pyramid

3. Successively align with finer 

pyramids

 Search smaller range

Why is this faster?

Are we guaranteed to get the same 

result?



Template Matching with Image 

Pyramids

Input: Image, Template

1. Match template at current scale

2. Downsample image
 In practice, scale step of 1.1 to 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps 
with non-maxima suppression



From Image Pyramid to 

Feature Pyramid
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Feature Pyramid Networks
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Feature Pyramid Networks
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Feature Pyramid Networks
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Feature Pyramid Networks
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Segmentation
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Pyramid in segmentation
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Panoptic Feature Pyramid NetworksU-Net: Convolutional Networks for Biomedical 
Image Segmentation



Atrous Convolution
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DeepLab: Semantic Image Segmentation withDeep Convolutional Nets, Atrous

Convolution,and Fully Connected CRFs



HRNet
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Deep High-Resolution Representation Learning for Visual Recognition



Pyramid in Transformer
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Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions



Temporal Pyramid: Image to 

Video
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Instance-Aware Alignment for Anchor Free Temporal Action Detection



Image pyramids

◼ Gaussian pyramid

 Application for recognition

◼ Laplacian pyramid

 Application for image blending
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Laplacian Pyramid



The Laplacian Pyramid
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The Laplacian Pyramid
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The Laplacian Pyramid
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The Laplacian Pyramid
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Downsampling & Upsampling
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Upsampling
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The Laplacian Pyramid
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The Laplacian Pyramid
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The Laplacian Pyramid
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Laplacian filter

Gaussian
unit impulse

Laplacian of Gaussian



LoG vs. DoG
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The Laplacian Pyramid
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The Laplacian Pyramid
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Computing 

Gaussian/Laplacian Pyramid

http://sepwww.stanford.edu/~morgan/texturematch/paper_html/node3.html

Can we reconstruct the original 

from the laplacian pyramid?



Hybrid Images

◼ A. Oliva, A. Torralba, P.G. Schyns, 
“Hybrid Images,” SIGGRAPH 2006

http://cvcl.mit.edu/hybridimage.htm


Hybrid Image



Creating the 

Gaussian/Laplacian Pyramid

Downsample

(Smooth(G1))

G1 - Smooth(Upsample(G2))

Image = G1

L1

G2

…GN = LN

G2 - Smooth(Upsample(G3)) 

L2

G3 - Smooth(Upsample(G4)) 

L3

G3

• Use same filter for smoothing in each step (e.g., Gaussian with 𝜎 = 2)

• Downsample/upsample with “nearest” interpolation

Downsample

(Smooth(G2))

Smooth, then downsample



Hybrid Image in Laplacian 

Pyramid

High frequency → Low frequency



Reconstructing image from 

Laplacian pyramid
Image = 

L1

L4

L2

G3 = L3 + Smooth(Upsample(L4)) 

L3

• Use same filter for smoothing as in deconstruction

• Upsample with “nearest” interpolation

• Reconstruction will be nearly lossless

G2 = L2 + Smooth(Upsample(G3)) 

L1 + Smooth(Upsample(G2)) 



Laplacian pyramid 

applications
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Image Blending
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Image Blending
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Image Blending
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Image Blending
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Affect of window size
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Affect of window size
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Good Window Size

2021/4/6 119



Image Blending with the 

Laplacian Pyramid
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Image Blending with the 

Laplacian Pyramid
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Image Blending with the 

Laplacian Pyramid
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Today’s class

◼ Template matching

◼ Gaussian Pyramids
 Application for recognition

 Pyramids representation in deep learning

◼ Laplacian Pyramids
 Application for image blending

 Hybrid images

◼ Steerable Pyramids：
 filter banks and texture analysis



Orientations
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Steerable Pyramid
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Steerable Pyramid
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Multivariate Gaussian
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Slide credit: 

Kristen Grauman



Gaussian Derivative
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Gaussian Scale
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Derivatives of Gaussian: Scale
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Orientation



Orientation

What about other orientations not axis aligned?



Any orientation can be computed as a linear combination of two filtered images

The smoothed directional gradient is a linear combination of two kernels

= cos(a) +sin(a)
=

Steereability of gaussian derivatives, Freeman & Adelson 92

Orientation



Simple example of steerable filter

“Steerability”-- the ability to synthesize a filter of any orientation from a linear 

combination of filters at fixed orientations.

Filter Set:
0o 90o Synthesized 30o

Response:
Raw Image

Taken from:

W. Freeman, T. 

Adelson, “The Design 

and Use of Sterrable 

Filters”, IEEE 

Trans. Patt, Anal. and 

Machine Intell., 

vol 13, #9, pp 891-900, 

Sept 1991



Orientation analysis



Orientation analysis



Orientation analysis

High resolution in

orientation requires

many oriented filters

as basis (high order

gaussian derivatives

or fine-tuned Gabor

wavelets).



N-th order Gaussian derivatives
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N-th order Gaussian derivatives
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N-th order Gaussian derivatives
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N-th order Gaussian derivatives
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Filter bank

Slide credit: 

Kristen Grauman
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Slide credit: 

Kristen Grauman



Showing magnitude of responses

Slide credit: 

Kristen Grauman
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Steerable pyramid applications
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Image representation

• Pixels: great for spatial resolution, poor access 

to frequency

• Fourier transform: great for frequency, not for 

spatial information

• Pyramids/filter banks: balance between spatial 

and frequency information



Application: Representing Texture

Source: Forsyth



Texture

What defines a texture?



Includes: more regular patterns



Includes: more random patterns



Texture and Material

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce_grp/data/texture_database/samples/



177

Materials under different illumination and 

viewing directions

Different

illumination

and viewing

directions

Plaster-a Crumpled

Paper

Concrete Plaster-b

(zoomed)



What is texture?

◼ Texture is a phenomenon that is widespread, 

easy to recognize, and hard to define.

◼ Views of large numbers of small objects

◼ Regular or stochastic patterns caused by 

bumps, grooves, and/or markings

◼ Textures tend to show repetition: the same 

local patch appears again and again.



Texture overview
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http://en.wikipedia.org/wiki/File:Texture_spectrum.jpg


Shape from texture

◼ Use deformation of texture from point to point to 

estimate surface shape

Pics from A. Loh: http://www.csse.uwa.edu.au/~angie/phdpics1.html



Analysis vs. Synthesis

Images:Bill Freeman, A. Efros

Why analyze 

texture?



Texture-related tasks

◼ Shape from texture

 Estimate surface orientation or shape from image 

texture

◼ Segmentation/classification from texture cues

 Analyze, represent texture

 Group image regions with consistent texture

◼ Synthesis

 Generate new texture patches/images given some 

examples



Slide credit: 

Kristen Grauman
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http://animals.nationalgeographic.com/

Slide credit: 

Kristen Grauman



Why analyze texture?

Importance to perception:

◼ Often indicative of a material’s properties

◼ Can be important appearance cue, especially if 

shape is similar across objects

◼ Aim to distinguish between shape, boundaries, 

and texture

Technically: 

◼ Representation-wise, we want a feature one 

step above “building blocks” of filters, edges.



Psychophysics of texture

◼ Some textures distinguishable with preattentive

perception– without scrutiny, eye movements 

[Julesz 1975]

Same or different?
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Capturing the local patterns with 

image measurements

[Bergen & 

Adelson,  

Nature 1988]

Scale of 

patterns 

influences 

discriminability

Size-tuned 

linear filters



Texture representation

◼ Textures are made up of repeated local 

patterns, so:

 Find the patterns

◼ Use filters that look like patterns (spots, bars, raw 

patches…)

◼ Consider magnitude of response

 Describe their statistics within each local window, 

e.g.,

◼ Mean, standard deviation

◼ Histogram

◼ Histogram of “prototypical” feature occurrences



Texture representation: example

original image

derivative filter 

responses, squared

statistics to summarize 

patterns in small 

windows 

mean 

d/dx

value 

mean 

d/dy

value 

Win. #1 4 10

…

Slide credit: 

Kristen Grauman



Texture representation: example

original image

derivative filter 

responses, squared

statistics to summarize 

patterns in small 

windows 

mean 

d/dx

value 

mean 

d/dy

value 

Win. #1 4 10

Win.#2 18 7

…

Slide credit: 

Kristen Grauman



Texture representation: example

original image

derivative filter 

responses, squared

statistics to summarize 

patterns in small 

windows 

mean 

d/dx

value 

mean 

d/dy

value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…

Slide credit: 

Kristen Grauman



Texture representation: example

statistics to summarize 

patterns in small 

windows 

mean 

d/dx

value 

mean 

d/dy

value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…

Dimension 1 (mean d/dx value)
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Slide credit: 

Kristen Grauman



Texture representation: example

statistics to summarize 

patterns in small 

windows 

mean 

d/dx

value 

mean 

d/dy

value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…

Dimension 1 (mean d/dx value)

D
im

en
si

o
n

 2
 (

m
ea

n
 d

/d
y

 v
a
lu

e)

Windows with 

small gradient in 

both directions

Windows with 

primarily vertical 

edges

Windows with 

primarily horizontal 

edges
Both

Slide credit: 

Kristen Grauman



Texture representation: example

original image

derivative filter 

responses, squared

visualization of the 

assignment to texture 

“types” 

Slide credit: 

Kristen Grauman



Texture representation: example

statistics to summarize 

patterns in small 

windows 

mean 

d/dx

value 

mean 

d/dy

value 

Win. #1 4 10

Win.#2 18 7

Win.#9 20         20

…

…

Dimension 1 (mean d/dx value)
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Far: dissimilar textures

Close: similar textures

Slide credit: 

Kristen Grauman



Texture representation: example

Dimension 1
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Slide credit: 

Kristen Grauman



Texture representation: example

Dimension 1

D
im

e
n

s
io

n
 2

a

b

a

b

Distance reveals how dissimilar 

texture from window a is from 

texture in window b.

b

Slide credit: 

Kristen Grauman



Texture representation: window scale

◼ We’re assuming we know the relevant window 

size for which we collect these statistics.

Possible to perform scale 

selection by looking for 

window scale where texture 

description not changing.

Slide credit: 

Kristen Grauman



Filter banks

◼ Our previous example used two filters, and 

resulted in a 2-dimensional feature vector to 

describe texture in a window.

 x and y derivatives revealed something about local 

structure.

◼ We can generalize to apply a collection of 

multiple (d) filters: a “filter bank”

◼ Then our feature vectors will be d-dimensional.

 still can think of nearness, farness in feature space



Filter banks

◼ What filters to put in the bank?

 Typically we want a combination of scales and 

orientations, different types of patterns.

Matlab code available for these examples: 

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html

scales

orientations

“Edges” “Bars”

“Spots”



You try: Can you match the texture to the 

response?

Mean abs responses

Filters
A

B

C

1

2

3

Derek Hoiem



Representing texture by mean abs response

Mean abs responses

Filters

Derek Hoiem



[r1, r2, …, r38]

We can form a 

feature vector 

from the list of 

responses at each 

pixel.

Slide credit: 

Kristen Grauman



d-dimensional features
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Euclidean distance (L2)

Slide credit: 

Kristen Grauman
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Texture Recognition

Felt?

Polyester?

Terrycloth?

Rough Plaster?

Leather?

Plaster?

Concrete?

Crumpled Paper?

Sponge?

Limestone?

Brick?

?

?
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2D Textons

◼ Goal: find canonical local features in a texture;

1) Filter image with linear filters:

2) Vector quantization (k-means) on filter outputs;

3) Quantization centers are the textons.

◼ Spatial distribution of textons defines the texture; 
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2D Textons (cont’d)



213

Texton Labeling

◼ Each pixel labeled to texton i (1 to K) which is 

most similar in appearance;

◼ Similarity measured by the Euclidean distance 

between the filter responses;
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Material Representation

◼ Each material is now represented as a 

spatial arrangement of symbols from the 

texton vocabulary;

◼ Recognition：ignore spatial arrangement, 

use histogram (K=100);
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Histogram Models for Recognition

(Leung & Malik, 1999)

Terrycloth

Rough Plastic

Pebbles

Plaster-b
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Similarity of materials

◼ Similarity between histograms measured 

using chi-square difference:

å
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Similarity Matrix

j)  sample , i  (materialSimilarity ===ije

Plaster-a Plaster-b

Aluminum

Foil

Cork



Example uses of texture in 

vision: analysis



Classifying materials, “stuff”

Figure by Varma & 

Zisserman



Texture features 

for image retrieval

Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a 

metric for image retrieval. International Journal of Computer Vision, 

40(2):99-121, November 2000, 



Characterizing 

scene 

categories by 

texture

L. W. Renninger and 

J. Malik.  When is 

scene identification 

just texture 

recognition? Vision 

Research 44 (2004) 

2301–2311



http://www.airventure.org/2004/gallery/images/073104_satellite.jpg

Segmenting 

aerial imagery 

by textures



Texture-related tasks

◼ Shape from texture

 Estimate surface orientation or shape from image 

texture

◼ Segmentation/classification from texture cues

 Analyze, represent texture

 Group image regions with consistent texture

◼ Synthesis

 Generate new texture patches/images given some 

examples



Texture synthesis

◼ Goal: create new samples of a given texture

◼ Many applications: virtual environments, 

hole-filling, texturing surfaces 



The Challenge

◼ Need to model the whole 

spectrum: from repeated to 

stochastic texture

repeated

stochastic

Both?

Alexei A. Efros and Thomas K. Leung, “Texture 

Synthesis by Non-parametric Sampling,” Proc. 

International Conference on Computer Vision (ICCV), 

1999.



Synthesizing One Pixel

 What is                                                                 ?

 Find all the windows in the image that match the neighborhood

 To synthesize x

◼ pick one matching window at random

◼ assign x to be the center pixel of that window

p

input image

synthesized image

Slide from Alyosha Efros, ICCV 1999



Neighborhood Window

input

Slide from Alyosha Efros, ICCV 1999



Varying Window Size

Increasing window size

Slide from Alyosha Efros, ICCV 1999



Synthesis results
french canvas rafia weave

Slide from Alyosha Efros, ICCV 1999



white bread brick wall

Synthesis results

Slide from Alyosha Efros, ICCV 1999



Synthesis results

Slide from Alyosha Efros, ICCV 1999



Failure Cases

Growing garbage Verbatim copying
Slide from Alyosha Efros, ICCV 1999



Hole Filling

Slide from Alyosha Efros, ICCV 1999



Extrapolation

Slide from Alyosha Efros, ICCV 1999



Summary

◼ Template, Pyramid, and Texture
 Template matching (SSD or Normxcorr2)

◼ SSD can be done with linear filters, is sensitive to overall 
intensity

 Gaussian pyramid
◼ Coarse-to-fine search, multi-scale detection

 Laplacian pyramid
◼ More compact image representation

◼ Can be used for compositing in graphics

 Steerable pyramid
◼ Filter banks for representing texture


