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Image filtering

Compute a function of the local neighborhood at
each pixel in the image

o Function specified by a “filter” or mask saying how to
combine values from neighbors.

Uses of filtering:

o Enhance an image (denoise, resize, etc)
o Extract information (texture, edges, etc)
o Detect patterns (template matching)



Three views of filtering

= Image filters in spatial domain
o Filter is a mathematical operation on values of each patch
o Smoothing, sharpening, measuring texture

= Image filters in the frequency domain
o Filtering is a way to modify the frequencies of images
o Denoising, sampling, image compression

= Templates and Image Pyramids
o Filtering is a way to match a template to the image
o Detection, coarse-to-fine registration
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Strong Vertical Frequency

(Sharp Horizontal Edge)
/ Diagonal Frequencies Strong Horz. Frequency
(Sharp Vert. Edge)
~—__ '
/ Log Magnitude

Low Frequencies



The Convolution Theorem

The Fourier transform of the convolution of two
functions is the product of their Fourier transforms

Flg*h]=F[g]F[Ah]

The inverse Fourier transform of the product of two
Fourier transforms is the convolution of the two
inverse Fourier transforms

F'[gh]l=F '[g]*F '[A]

Convolution in spatial domain is equivalent to
multiplication in frequency domain!



Filtering in spatial domain




Filtering in frequency domain

FFT

Inverse FFT

T



Why does the Gaussian give a nice smooth
image, but the square filter give edg)hartifacts?

Gaussian - Box filter




Gaussian Filter



Box Filter



Sampling

Why does a lower resolution image still make
sense to us? What do we lose?

Image:


http://www.flickr.com/photos/igorms/136916757/

Fourier Interpretation: Sampling
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Fourier Interpretation: Sampling
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Fourier Interpretation: Sampling
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Fourier Interpretation: Sampling
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Sampling and aliasing

256x256 128x128 64x64 32x32 [6x16
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Anti-aliasing

Solutions:
= Sample more often

= Get rid of all frequencies that are greater than
half the new sampling frequency
o Will lose information
o But it's better than aliasing
o Apply a smoothing filter



Anti-aliasing



Three views of filtering

= Image filters in spatial domain
o Filter is a mathematical operation on values of each patch
o Smoothing, sharpening, measuring texture

= Image filters in the frequency domain
o Filtering is a way to modify the frequencies of images
o Denoising, sampling, image compression

= Templates and Image Pyramids
o Filtering is a way to match a template to the image
o Detection, coarse-to-fine registration



Today's class

Template matching

Gaussian Pyramids

o Application for recognition

o Pyramids representation in deep learning
Laplacian Pyramids

o Application for image blending

o Hybrid images

Steerable pyramids:

o Filter banks and texture analysis



Template matching

= Goal: find 8 inimage

= Main challenge: What is
a good similarity or
distance measure
between two patches?
o Correlation
o Zero-mean correlation

o Sum Square Difference

O

Normalized Cross
Correlation




Matching with filters

= Goal: find In iImage
= Method O: filter the image with eye patch
hlm,n]="> glk,I] flm+k,n+I]

¥ k.l

f=1mage
g = filter

What went wrong?

Input Filtered Image



Matching with filters

= Goal: find @& inimage

m Method 1: filter the image with zero-mean eye

Z(g k11-g) (f[m+k,n+1])

mean of template g

Inpt Filtered Image (scaled) Thresholded Image



Matching with filters

u Goal: find @ inimage
= Method 2: SSD

hlm,n]=>Y (glk,l]- fIm+k,n+1])
| l“ - k.l

Inpt 1- sqrt(SSD) Thresholded Image



Matching with filters

Can SSD be implemented with linear filters?

hlm,n] = (glk,/1- flm+k,n+1])



Matching with filters

) GOal: flnd E ol Image What’s the potential downside
= Method 2: SSD of SSD?

hlm,n]=>Y (glk,l]- fIm+k,n+1])

Input 1- sqrt(SSD)



Matching with filters
Goal: find @ inimage
Method 3: Normalized cross-correlation

mean template mean image patch

l |
2 (k-2 Im+kon+11=,,)

hlm,n] =

[Z(g[k,l]—g‘>2z(f[m+k,n+l]—fm,n>2]

Matlab: normxcorr2 (template, im)



Matching with filters

= Goal: find ® inimage
» Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image



Matching with filters

m Goal: find B inimage
» Method 3: Normalized cross-correlation

Normalized X-Correlation Thresholded Image



Q: What is the best method to use?

: Depends

Zero-mean filter: fastest but not a great
matcher

SSD: next fastest, sensitive to overall intensity

Normalized cross-correlation: slowest, invariant
to local average intensity and contrast



Today's class

Template matching

Gaussian Pyramids

o Application for recognition

o Pyramids representation in deep learning
Laplacian Pyramids

o Application for image blending

o Hybrid images

Steerable pyramids:

o filter banks and texture analysis
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Translation invariance
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We need translation and
scale invariance
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Image pyramids
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Subsampling by a factor of 2

9000 ©coo

e .

Throw away every other row and column
to create a 1/2 size image



Recall: sampling

Gaussian

Filter Sample
[ Image }_ [ Low-Pass }_[ Low-Res }

Filtered Image Image
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Image pyramids

= Gaussian pyramid
o Application for recognition

= Laplacian pyramid
o Application for image blending

2021/4/6
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Fig.2a. The Gaussian pyrarmd. The original image. G, 1s
repeatedly Iftered and subsampied 1o generale the sequence
o! reduced resolution image G, (;: eic These comprise a
set af lowpass-fiftered copres of the onginal image in which
the bandwud!h decreases in one-octave steps
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Gaussian Pyramid
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Gaussian Pyramid

For each level
1. Blur input image with a Gaussian filter
2. Downsample image

63



Downsampling & Upsampling
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Gaussian Pyramid
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Gaussian pyramids used for

= Up or down sample images

= Multi-resolution image analysis
o Look for an object over various spatial scales

o Coarse-to-fine image regestration: form blur
estimate or the motion analysis on very low-
resolution image, upsample and repeat

o Often a successful strategy for avoiding local
minima in complicated estimation tasks

2021/4/6
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Coarse-to-fine Image
Registration

1. Compute Gaussian pyramid
2. Align with coarse pyramid

3. Successively align with finer
pyramids
o  Search smaller range

Why is this faster?

Are we guaranteed to get the same
result?



Template Matching with Image
Pyramids

Input: Image, Template
1. Match template at current scale

2. Downsample image
o In practice, scale step of 1.1 10 1.2

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps
with non-maxima suppression
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From Image Pyramid to
Feature Pyramid
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Feature Pyramid Networks

2021/4/6

73



Feature Pyramid Networks
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Feature Pyramid Networks
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Feature Pyramid Networks
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Segmentation

/8



Pyramid in segmentation

U-Net: Convolutional Networks for Biomedical Panoptic Feature Pyramid Networks
Image Segmentation

2021/4/6 79



Atrous Convolution

DeeplLab: Semantic Image Segmentation withDeep Convolutional Nets, Atrous
2021/4/6 Convolution,and Fully Connected CRFs 80



HRNet

Nii — Noy = Ny — Ny
N Moo = Nz — Ny

N Nig — Ny

N Naa,

Deep High-Resolution Representation Learning for Visual Recognition
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Pyramid in Transformer

Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

2021/4/6 82



Temporal Pyramid: Image to
Video

Instance-Aware Alignment for Anchor Free Temporal Action Detection

2021/4/6
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Image pyramids

= Gaussian pyramid
o Application for recognition

= Laplacian pyramid
o Application for image blending

2021/4/6
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Fig.4a. The Laplacian pyramid. Each level of this band-
pass pyramid represents the difference between suc-
cessive levels of the Gaussian pyramid.
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The Laplacian Pyramid

88



2021/4/6

The Laplacian Pyramid
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The Laplacian Pyramid

90



2021/4/6

The Laplacian Pyramid
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Downsampling & Upsampling
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Upsampling
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The Laplacian Pyramid
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The Laplacian Pyramid
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The Laplacian Pyramid
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Laplacian filter

unit impulse _
Gaussian Laplacian of Gaussian



LoG vs. DoG
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The Laplacian Pyramid
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The Laplacian Pyramid
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Computing
Gaussian/Laplacian Pyramid

% [

-"-_: ! ! g f

. 2
| gl T

. : iy

e 4 . - - s~
S I.I!!]I’ 4 SUBSAMP 7 IJ!!].’ / SUBSAMP :

ad [ - S - A7 :

+

i,

Can we reconstruct the original
from the laplacian pyramid?

http://sepwww.stanford.edu/~morgan/texturematch/paper html/node3.html



Hybrid Images

= A. Oliva, A. Torralba, P.G. Schyns,
‘Hybrid Images.” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Hybrid Image



Creating the
Gaussian/Laplacian Pyramid

Image = G : Smooth, then downsample
/ G
Downsample 2 Downsample
(Smooth(G))) (Smooth(G,)) G3
> > .o .GN — LN

\ G, - Smooth(Uv/ \ / \
L

-
47
G; - Smooth(Upsample(G,))
G, - Smooth(Upsample(G,))

* Use same filter for smoothing in each step (e.g., Gaussian with g = 2)
Downsample/upsample with “nearest” interpolation



Hybrid Image in Laplacian
Pyramid

High frequency = Low frequency




Reconstructing image from
Laplacian pyramid

Image = L, + Smooth(Upsample(G,))

G, =L, + Smooth(Upsample(G))
G; =L, + Smooth(Upsample(L,))

<
<
H—s-
Ll L2 L3 .-'II]

* Use same filter for smoothing as in deconstruction
» Upsample with “nearest” interpolation
* Reconstruction will be nearly lossless



Laplacian pyramid
applications
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Image Blending
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Image Blending
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Image Blending
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Image Blending

Feathering
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Affect of window size
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Affect of window size
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Good Window Size
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Image Blending with the
Laplacian Pyramid
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Image Blending with the
Laplacian Pyramid
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Image Blending with the
Laplacian Pyramid
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Today's class

Template matching

Gaussian Pyramids

o Application for recognition

o Pyramids representation in deep learning
Laplacian Pyramids

o Application for image blending

o Hybrid images

Steerable Pyramids:

o filter banks and texture analysis



Orientations
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Steerable Pyramid
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Steerable Pyramid
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Multivariate Gaussian

(e _ 1 . 1 - I'sh=1¢..
pla;p, ) = ORI exp (2(1 — )X (v — ,u))

s_|7 0 16 0 10 5]
"o 9 2= 2=
0O 9 5 5
Slide credit:
Kristen Grauman




Gaussian Derivative
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Gaussian Scale
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Derivatives of Gaussian: Scale
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Orientation

)C2+y2

20

ag(xsy) —X T2
— €




Orientation

What about other orientations not axis aligned?



Orientation

ag(xsy) _ —-X 6_ 202
ox 2m0 :

gx(x’y) =

The smoothed directional gradient is a linear combination of two kernels
WVg®I = (cos(a)gx(x,y) + sin(a)gy(x,y)) ® I(x,y) =

Any orientation can be computed as a linear combination of two filtered images
= cos(a)g (x,y) ®I(x,y) + sin(a)gy (x,y)®I(x,y) =

Steereability of gaussian derivatives, Freeman & Adelson 92



Simple example of steerable filter

“Steerability”-- the ability to synthesize a filter of any orientation from a linear
combination of filters at fixed orientations.

G —cos(B)G +s1n(t9)G90

90° Synthesized 30°
Filter Set:
Taken from:

W. Freeman, T.
Adelson, “The Design

. and Use of Sterrable
Res ponse. Filters’, IEEE
Raw |mage Trans. Patt, Anal. and

Machine Intell.,
vol 13, #9, pp 891-900,
Sept 1991




Orientation analysis

Gain

Basis
filter
bank
Summin Ada l
:ﬁ-.':;’.!'e jurn::tiung ﬁ!taragﬂi#n?age

=

Fig. 3. Steerable filter system block diagram. A bank of dedicated filters
process the image. Their outputs are multiplied by a set of gain maps that
adaptively control the orientation of the synthesized filter.

VAVAL
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Orientation analysis

High resolution in
orientation requires
many oriented filters
as basis (high order
gaussian derivatives
or fine-tuned Gabor
wavelets).

(k) (d) (E)



N-th order Gaussian derivatives
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N-th order Gaussian derivatives
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N-th order Gaussian derivatives
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N-th order Gaussian derivatives
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Filter bank

Slide credit:
Kristen Grauman



3d[-zdeounsne/woo 1a101dxasexa)y mmm//:dpy wosy dgew|

Slide credit:

Kristen Grauman



Showing magnitude of responses

Slide credit:
Kristen Grauman
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Slide credit:
Kristen Grauman



Steerable pyramid applications
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Image representation

* Pixels: great for spatial resolution, poor access
to frequency

« Fourier transform: great for frequency, not for
spatial information

* Pyramids/filter banks: balance between spatial
and frequency information



Application: Representing Texture

Source: Forsyth



Texture

What defines a texture?



Includes: more regular patterns




Includes: more random patterns



exture and Material

http://www-cvr.ai.uiuc.edu/ponce grp/data/texture database/samples/



Texture and Orientation

http://www-cvr.ai.uiuc.edu/ponce grp/data/texture database/samples/



Texture and Scale

http://www-cvr.ai.uiuc.edu/ponce grp/data/texture database/samples/



Materials under different illumination and
viewing directions

Different
1llumination
and viewing

directions

- i
=

RS
Fl
i/

Plaster-a

Paper (zoomed)

177



What is texture?

Texture is a phenomenon that is widespread,
easy to recognize, and hard to define.

Views of large numbers of small objects

Regular or stochastic patterns caused by
bumps, grooves, and/or markings

Textures tend to show repetition: the same
local patch appears again and again.



Texture overview

2021/4/6 179


http://en.wikipedia.org/wiki/File:Texture_spectrum.jpg

Shape from texture

= Use deformation of texture from point to point to
estimate surface shape

Pics from A. Loh: http://www.csse.uwa.edu.au/~angie/phdpics1.html



Analysis vs. Synthesis

Why analyze
texture?

Images:Bill Freeman, A. Efros



Texture-related tasks

Shape from texture

o Estimate surface orientation or shape from image
texture

Segmentation/classification from texture cues
o Analyze, represent texture

o Group image regions with consistent texture
Synthesis

o (Generate new texture patches/images given some
examples






Slide credit:
Kristen Grauman



Slide credit:
http://animals.nationalgeographic.com/ Kristen Grauman



Why analyze texture?

Importance to perception:
Often indicative of a material’s properties

Can be important appearance cue, especially if
shape is similar across objects

Aim to distinguish between shape, boundaries,
and texture

Technically:

Representation-wise, we want a feature one
step above “building blocks™ of filters, edges.



Psychophysics of texture

Some textures distinguishable with preattentive

perception— without scrutiny, eye movements
[Julesz 1979]

Same or different?
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Capturing the local patterns with
Image measurements

|Bergen &
Adelson,
Nature 1988]

Scale of
patterns
influences
discriminability

Size-tuned
linear filters



Texture representation

= Textures are made up of repeated local
patterns, so:

o Find the patterns

= Use filters that look like patterns (spots, bars, raw
patches...)

= Consider magnitude of response
o Describe their statistics within each local window,
e.g.,
= Mean, standard deviation
= Histogram
= Histogram of “prototypical” feature occurrences



Texture representation: example

d/dx d/dy
value value
Win. #1 4 10

original image

statistics to summarize

Slide credit: derivative filter patterns in small
Kristen Grauman responses, squared windows



Texture representation: example

d/dx d/dy

value value
Win. #1 4 10
Win.#2 18 7

original image

statistics to summarize

Slide credit: derivative filter patterns in small
Kristen Grauman responses, squared windows



Texture representation: example

mean mean

d/dx d/dy

value value
Win. #1 4 10
Win.#2 18 7
Win.#9 20 20

original image

statistics to summarize

Slide credit: derivative filter patterns in small
Kristen Grauman responses, squared windows



Texture representation: example

Win. #1 4 10

Win.#2 18 7

Dimension 2 (mean d/dy value)

O
~. win#9 | 20 20

>

Dimension 1 (mean d/dx value)

[ )
[ )
[ ]
statistics to summarize
Slide credit: patterns in small
Kristen Grauman windows



Windows wit

Texture representation: example

primarily horizontal Both

edge

)

=

1

> '-.

>

< \

p Win. #1 | 4 10
S

<?)

g Win.#2 18 7
g\

= Win#9 | 20 20
=

<P

E

=) 7

Dimension 1 (mean d/dx value)
Windows with Windows with *
small gradient in primarily vertical statistics to summarize
Slide credit: both directions edges patterns in small

Kristen Grauman windows



Texture representation: example

original image

Slide credit: derivative filter
Kristen Grauman responses, squared



Texture representation: example

~~~~
e ..
e
-

A
P
=
o
<
> .
>} // \\
= 1’ / . .
~ / /
I !
- i \
3 \ ;
= SN Farrdissimilar textur
= | e Win. #1 4 10
g\
s | S A
= N A ., Win #2 18 I
2 Close: similar textures
£ ] Win.#9 20 20
_________________ - 4
Dimension 1 (mean d/dx value)
[ J
[ J
[ ]

statistics to summarize
Slide credit: patterns in small

Kristen Grauman windows



Texture representation: example

1 ‘ 90  D(a,b)=+(ai-b) +(a2—b2)
- a
N O
S
£
(]
>
Dimension 1
Slide credit:

Kristen Grauman



Texture representation: example

[ Jle——a

Dimension 2

Dimension 1

Distance reveals how dissimilar
texture from window a is from
texture in window b.

Slide credit:
Kristen Grauman



Texture representation: window scale

= We're assuming we know the relevant window
size for which we collect these statistics.

Possible to perform scale
selection by looking for
window scale where texture
description not changing.

Slide credit:
Kristen Grauman



Filter banks

= Our previous example used two filters, and
resulted in a 2-dimensional feature vector to
describe texture in a window.

o X and y derivatives revealed something about local
structure.

= We can generalize to apply a collection of
multiple (d) filters: a “filter bank”

= Then our feature vectors will be d-dimensional.

o still can think of nearness, farness in feature space



scales

—

orientationﬁ

Filter banks
|

“Edges” “Bars”

“Sp()tS”

= What filters to put in the bank?
o Typically we want a combination of scales and

orientations, different types of patterns.

Matlab code available for these examples:
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html



You try: Can you match the texture to the
response”?

Filters

Mean abs responses
Derek Hoiem



Representing texture by mean abs response

Filters

Mean abs responses Derek Hoiem



Irl, 12, ..., r3¢

We can form a
feature vector
from the list of
responses at each
pixel.

Slide credit:
Kristen Grauman



d-dimensional features

Euclidean distance (L,)

D(a,b) = \/i(di b))’

Slide credit:
Kristen Grauman



Texture Recognition

210

Felt?
Polyester?
Terrycloth?
Rough Plaster?
Leather?
Plaster?
Concrete?
Crumpled Paper?
Sponge?
Limestone?
Brick?



2D Textons

Goal: find canonical local features in a texture;

1) Filter image with linear filters:

2) Vector quantization (k-means) on filter outputs;
3) Quantization centers are the textons.

Spatial distribution of textons defines the texture;

211



2D Textons (cont’ d)




Texton Labeling

= Each pixel labeled to texton j (1 to K) which is
most similar in appearance,

= Similarity measured by the Euclidean distance
between the filter responses;

213



Material Representation

= Each material is now represented as a
spatial arrangement of symbols from the

texton vocabulary;

= Recognition: ignore spatial arrangement,
use histogram (K=100);

214



Histogram Models for Recognition
(Leung & Malik, 1999)

Rough Plastic

Pebbles

Plaster-b

Terrycloth

215



Similarity of materials

Similarity between histograms measured
using chi-square difference:

a (h, (n)—h, (”))2
-1 (1) +hy(n)

%2(}119}12) —

216



Similarity Matrix

[=)
o
o
(=)
o
o

0.0/0.0/0.0/0.0/0.0|0.0/0.0/0.0/0.0/0.0
0.3/0.0/0.1/0.2/0.0/0.0/0.0{0.0/0.0/0.0
0.0/0.0/0.2/0.1/0.0|0.0/0.0/0.0|0.0/0.0
0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0
1.0/0.0/0.1/0.0/0.0(0.0/0.0/0.0|0.0/0.0
0.0/1.0/0.0/0.0/0.0|0.0/0.0/0.0/0.1|0.0
0.1]/0.0/1.0/0.7/0.0/0.0/0.0/0.0/0.0/0.0
0.0/0.0/0.8/1.0/0.0/0.0/0.0{0.0/0.0/0.0
0.0/0.0/0.0/0.0/0.5/0.0/0.0/0.0(0.0/0.0
0.0/0.0/0.0/0.0/0.0{1.0/0.1/0.1|0.0/0.0
0.0/0.0/0.0/0.0/0.2/1.0/0.1/0.0/0.0

Felt|o.6
Terrycloth |0.0
Rough Plastic|0.0
Leather|0.2
Sandpaper|0.0
Pebbles |0.0
Plastera |0.0
Plasterb |0.0
Rough Paper|0.0
Artificial Grass|0.0
Roof Shingle |0.0
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Aluminum Foil 10.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0(0.1/0.0/1.0/0.0/0.0
Cork |0.0/0.0/0.0/0.0/0.0/0.3/0.0/0.0/0.0/0.0/0.0/0.0|1.0/0.2
Rouah Tile |0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0|0.0/0.9
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Example uses of texture Iin
vision: analysis



Classifying materials, “stuff”

Figure by Varma &
Zisserman



Texture features
for image retrieval
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Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover's distance as a
metric for image retrieval. International Journal of Computer Vision,
40(2):99-121, November 2000,



Natural
® Outdoor

Characterizing
scene
categories by
texture

L. W. Renninger and
J. Malik. When is
scene identification
just texture
recognition? Vision
Research 44 (2004)
2301-2311



Segmenting
aerial imagery
by textures

http://www.airventure.org/2004/gallery/images/073104_satellite.jpg



Texture-related tasks

Shape from texture

o Estimate surface orientation or shape from image
texture

Segmentation/classification from texture cues
o Analyze, represent texture

o Group image regions with consistent texture
S\Jlnthneic

o (Generate new texture patches/images given some
examples



Texture synthesis
= Goal: create new samples of a given texture

= Many applications: virtual environments,
hole-filling, texturing surfaces

=



The Challenge

= Need to model the whole repeated
spectrum: from repeated to R g
stochastic texture

~stochastic

Alexei A. Efros and Thomas K. Leung, “Texture
Synthesis by Non-parametric Sampling,” Proc.
International Conference on Computer Vision (ICCV),
1999.

Both?



Synthesizing One Pixel

input image

synthesized image

o Whatis P(x|neighborhood of pixels around x) ?
o Find all the windows in the image that match the neighborhood

o To synthesize x
= pick one matching window at random
= assign x to be the center pixel of that window

Slide from Alyosha Efros, ICCV 1999



Neighborhood Window

Slide from Alyosha Efros, ICCV 1999



Varying Window Size
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Increasing window size >

Slide from Alyosha Efros, ICCV 1999



Synthesis results

french canvas rafia weave

L

Slide from Alyosha Efros, ICCV 1999



Synthesis results

white bread brick wall

: 1 .

Slide from Alyosha Efros, ICCV 1999




Synthesis results
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Slide from Alyosha Efros, ICCV 1999



Failure Cases

Growing garbage Verbatim copying

Slide from Alyosha Efros, ICCV 1999



Hole Filling




Extrapolation
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Slide from Alyosha Efros, ICCV 1999



Summary

= Template, Pyramid, and Texture

O

Template matching (SSD or Normxcorr2)

= SSD can be done with linear filters, is sensitive to overall
intensity

Gaussian pyramid
= Coarse-to-fine search, multi-scale detection

Laplacian pyramid
= More compact image representation
= Can be used for compositing in graphics

Steerable pyramid
= Filter banks for representing texture



