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Image filtering

Point Operation

H . o

Neighborhood Operation
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Image filtering

Compute a function of the local neighborhood at
each pixel in the image

o Function specified by a “filter” or mask saying how to
combine values from neighbors.

Uses of filtering:

o Enhance an image (denoise, resize, etc)
o Extract information (texture, edges, etc)
o Detect patterns (template matching)

Adapted from Derek Hoiem



Three views of filtering

= Image filters in spatial domain
o Filter is a mathematical operation on values of each patch
o Smoothing, sharpening, measuring texture

= Image filters in the frequency domain
o Filtering is a way to modify the frequencies of images
o Denoising, sampling, image compression

= Templates and Image Pyramids
o Filtering is a way to match a template to the image
o Detection, coarse-to-fine registration



Common types of noise

o Salt and pepper noise:
random occurrences of
black and white pixels

o Impulse noise: random
occurrences of white
pixels

o Gaussian noise:
variations in intensity
drawn from a Gaussian
normal distribution

Impulse noise Gaussian noise



Correlation filtering

Say the averaging window size IS 2k+1 X 2k+1:

G[i,j]—(2k+1)2 S % Flitug+ol
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Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F[ij]

Now generalize to allow different weights depending on
neighboring pixel’s relative position:

Gli, j] = Z Z H[u v]F[z—I—ug—I—v]
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Non-uniform weights



Averaging filter
= What values belong in the kernel H for the moving
average example?

F[x,y] ® H[uvv] G[az,y]
1 1 1 0 [20]40 soi;.i
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“box filter”

G=HQF



depicts box filter:
white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 37



Gaussian filter

= What if we want nearest neighboring pixels to have
the most influence on the output?

This kernel is an
approximation of a 2d
Gaussian function:
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Flx,y]

= Removes high-frequency components from the
image (“low-pass filter”).






Parameter o is the “scale” / "width” / “spread” of the Ga'u33|an
kernel, and controls the amount of smoothing.

1Dm

1] 1 20 a0 2 i 10 20 an

for sigma=1:3:10
h = fspecial ('gaussian', fsize,
sigma) ;
out = imfilter(im, h);
imshow (out) ;
pause;



Definition of discrete 2D

convolution: & notice the flip
(f * g)(x,y) Z f@, NIz —d,y—j)
,j——OO
Definitiqn c.)f discrete 2D notice the lack of a
correlation: & flip
(f * g)(x,y) Z F@ NI +14,y+ )
,j——OO

» Most of the time won’t matter, because our kernels will be symmetric.



Separability gl
= In some cases, filter is separable, and we can factor into
two steps:

o Convolve all rows with a 1D filter

o Convolve all columns with a 1D filter
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Salt and

pepper—,|

noise

F | Median
D filtered

|

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);
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Objective of bilateral filtering

Smooth texture

Preserve edges
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Definition

Gaussian blur

I = D |Ga(lp—al)lq
€5 gpace

* only spatial distance, intensity ignored

Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

t 1

S Iy = 11/ bf S:lGas( P — q”)‘lGor( Ip — Iq|)| Iq
- q = 21985 gpace range
N A i normalization

40

< space

* spatial and range distances
* weights sum to 1



Example on a Real Image

= Kernels can have complex, spatially varying
shapes.

output




Three views of filtering

= Image filters in spatial domain
o Filter is a mathematical operation on values of each patch
o Smoothing, sharpening, measuring texture

= Image filters in the frequency domain
o Filtering is a way to modify the frequencies of images
o Denoising, sampling, image compression

= Templates and Image Pyramids
o Filtering is a way to match a template to the image
o Detection, coarse-to-fine registration



Today’s Class

Fourier transform and frequency domain
o Frequency view of filtering

Hybrid Image

Sampling




Why does the Gaussian give a nice smooth |
image, but the square filter give edg)hartifacts?

Gaussian - Box filter




= A. Oliva, A. Torralba, P.G. Schyns,
"Hybrid Images.” SIGGRAPH 2006



http://cvcl.mit.edu/hybridimage.htm

Why do we get different, distance-dependé'{
interpretations of hybrid images?




Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/
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NS ...the manner in which the author arrives at these
had crazy idea (1 807) equations is not exempt of difficulties and...his

analysis to integrate them still leaves something
to be desired on the score of generality and even

rigour.
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Any univariate function ca
be rewritten as a weightea
sum of sines and cosines (
different frequencies.

= Don’t believe it?

o Neither did Lagrange,
Laplace, Poisson and
other big wigs

o Not translated into
English until 1878!
= Butit's (mostly) true!
o called Fourier Series

o there are some subtle
restrictions
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Our building block:
Asin( ax + @)

Add enough of them to get
any signal f(x) you want!

A sum of sines

f(target)=
f1 + f2+ f3...+ f

n
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Frequency Spectra

m example : g(7) = sin(2xf1) + (1/3)sin(27(3f) 1)
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Frequency Spectra
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Frequency Spectra




Frequency Spectra




Frequency Spectra




Frequency Spectra




Frequency Spectra

AZ%sin(Zﬂkt)
k=1
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Fourier series: just a change of basis

M f(x) = F(w)
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Inverse FT: Just a change of basis

M-" F(w) = f(x)
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Fourier analysis in images

o . . .

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering

Intensity Image




r

http://sharp.bu.edu/~slehar/fourier/fourier.html#filtering
More: http://www.cs.unm.edu/~brayer/vision/fourier.html



Summary

The spatial function f(z,y)
/ f (u, v)e?2"WT+vY) gy, dy

is decomposed into a weighted sum of 2D orthogonal basis functions
in a similar manner to decomposing a vector onto a basis using scalar
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Strong Vertical Frequency
(Sharp Horizontal Edge)

Strong Horz. Frequency

Diagonal Frequencies
e (Sharp Vert. Edge)

Log Magnitude

%2




Fourier Transform

= Fourier transform stores the magnitude and phase at
each frequency

o Magnitude encodes how much signal there is at a particular
frequency

o Phase encodes spatial information (indirectly)

o For mathematical convenience, this is often notated in terms of
real and complex numbers
4 ()

Amplitude: A= i\/R((‘))2 T [(a))2 Phase ¢ - an R(G))

Euler’s formula: ff!a'!.ﬂ'E = EDE(HI) + iEil‘l(ﬂI}



Computing the Fourier Transform

H(w) = F {h(x)} = Ac??

Continuous

H(w) = / h(x)e 39T dy

—
Discrete

1 — _j' E?r.irc;r.
H('l‘) — N Z h(;{r)e N
T x2=0

Fast Fourier Transform (FFT): NlogN

k=-N/2..N/2




Summary of Fourier Transform

s(f) transforms (continuous-time)

Continuous frequency

- S[H

. e e,
Transform S(f) é[ S(t)‘eﬂzﬂﬁ dt | 1 S(k) Y 1f

12 P 12

Discrete frequencies

ik 1 ik
s(t)-e 2rptdt = —f sp(t) e 25t dt
P Jp

> ian Lt
Bo _ sp(t) = S[k|-e”'P
Inverse | s(t) = f S(f) - et 4 f k;m
B Poisson summation formula (Fourier series)
s(nT) transforms (discrete-time)
Continuous frequency Discrete frequencies
S[K]
—fN—
1 k o0 g kn
1 &3 - v A X ‘12‘?1"—
P52 Y s(aT)-e w53 (p) * 22 rom-e ™3
Transform T P—) .
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Poisson summation formula (DTFT) — Z Sp(n ) €
DFT
1 Z .
S(RT) =T f1 fSi (f) . gi2mfnT df ) inverse DFT §
T g 1 i2m I
‘ SP(TaT):NZS[k]-ez N
I S | .
nverse Z S(nT) . J(t _ TLT) _ / T Sl (f) . et27rft df k
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inverse Fourier transform
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2-D DFT
ALK A 1D—>2DHE

F(u,v) = ﬁﬁgﬂx Y)expl-j2n(ir + )
f(x,y) = };Zm v)expmar(ﬁﬂ)]

it MR F () |- (R + ) |

7F H ﬁ[ﬁﬂ @¢(u,v) = arctan[I(u,v)/R(u,v)]

DI P(u,v)=| Fwv)|® = R*(u,v) + I* (u,v)
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The importance of phase
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A second example




The Convolution Theorem

The Fourier transform of the convolution of
two functions is the product of their Fourier
transforms

Flg*h]=F[g]F[Ah]

The inverse Fourier transform of the product
of two Fourier transforms is the convolution of
the two inverse Fourier transforms

F'[ghl=F '[g]*F [A]

Convolution in spatial domain is equivalent
to multiplication in frequency domain!



Linearity Flaz(t) + by(t)] = aF[z(t)] + bF[y(t)]

Fourier transform of a real signal is symmetric
about the origin

The energy of the signal is the same as the
energy of its Fourier transform

See Szeliski Book (3.4)



Filtering in spatial domain

intensity image




Filtering in frequency domain

FFT

intensity image log fft magnitude

FFT

Inverse FFT




FFT in Matlab

= Filtering with fft

A\

im” should be a gray-scale floating point image

[imh, imw] = size (im) ;

fftsize = 1024; % should be order of 2 (for speed) and include padding

im fft = f£ft2(im, fftsize, fftsize); % 1) f£ft im with padding

hs = 50; % filter half-size

fil = fspecial ('gaussian', hs*2+1, 10);

fil fft = fft2(fil, fftsize, fftsize); % 2) fft fil, pad to same size as image
im fil fft = im fft .* fil fft; % 3) multiply fft images

im fil = ifft2(im fil fft); % 4) inverse fft2

im fil = im fil(l+hs:size(im,1)+hs, l+hs:size(im, 2)+hs); % 5) remove padding

im= ... %
]

= Displaying with fft

figure(l), imagesc(log(abs(fftshift (im fft)))), axis image, colormap Jjet



Questions

Which has more information, the phase or the
magnitude?

What happens if you take the phase from one
Image and combine it with the magnitude from
another image?
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Filtering

Why does the Gaussian give a nice smootld"n'
image, but the square filter give edgy artifacts?

Gaussian Box filter




intensity image

Gaussian Filter

filter: gaussian

filtered image

e

filter: gaussian

log fit magnitude of filtered image




Box Filter

intensity image Open File filter: box filtered image

= Figure 4 Figure 6
iew Insert Tools Desktop Window Help File E_dit View Insert Tools Desktop Window Hﬁjlp | | File Edit View Insert Tools Desktop Window Help
=] A %, & N . = N -
NNEEEEN FAREEIL: AL EILIRS L M FIENCES | EEERIDEREEL PR L EILT

log fit magnitude of image filter: box log fit magnitude of filtered image




Question

Match the spatial domain image to the Fourier
magnitude image
1




Sampling

Why does a lower resolution image still make
sense to us? What do we lose?

w e m—

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/
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Throw away every other row and column
to create a 1/2 size image



Let’'s resample the
checkerboard by taking
one sample at each circle.

In the top left board, the
new representation is
reasonable. Top right also
yields a reasonable
representation.

Bottom left is all black
(dubious) and bottom right
has checks that are too
big.

b Vo



How should we go about sampling_ f#

= 1D example (sinewave):

AWAWAWA
/\\/\/ (VARVARV.

Source: S. Marschner



How should we go about sampling _ -

= 1D example (sinewave):

N/ N

Source: S. Marschner



Fourier Interpretation: Sampling

* Sampling in the spatial domain is like multiplying with a

spike function.
x J/ﬁ“ﬂ\* l 11
| |

e Sampling in the frequency domain is like...

L

?

2021/3/16 63



Fourier Interpretation: Sampling

* Sampling in the spatial domain is like multiplying with a

spike function.
NN 1
| |

L[]
* Sampling in the frequency domain is like convolving with a
spike function.

2021/3/16 64
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Fourier Interpretation: Sampling

Fourier )
3 Transform Magnitude
Signal —- 4 Spectrum
Sample Copy and
Shill
Y
Sampled IF'ourier .
Signal Iransform Magnitude
- Spectrum
| fitees . NSNS
Cut out by
multiplication
A ) with box filter
cecurately Inverse
Reconstructed Fourier
Signal Transform
S — Magnitude
Spectrum
t L — 1 :

2021/3/16 65



Fourier Interpretation: Sampling

Fourier )
i Transform Magnitude
Signal —— i Spectrum
Sample Copy i
Shift
Y
Sampled Fouricr )
Sigrl Transform Magnitude
_ = F Spectrum

ottt XXX,

Cut out by
multiplication
e '
Inaccurately Inverse with box filter
Reconstructed Fourier
Signal Transform
-
- Magmtude
Spectrum
f _'\\_‘ p‘
I Cad - —

2021/3/16
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Aliasing problem

= Sub-sampling may be dangerous....

= Characteristic errors may appear:
o “Wagon wheels rolling the wrong way in movies”
o “Checkerboards disintegrate in ray tracing”
o “Striped shirts look funny on color television”

Source: D. Forsyth



Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise).
Mark wheel with dot so we can see what’s happening.

[f camera shutter 1s only open for a fraction of a frame time (frame
time = 1/30 sec. for video, 1/24 sec. for film):

DDDRPOB

frame O frame 1 frame 2 frame 3 frame 4
0 ] ] .
shutter open fime

Without dot, wheel appears to be rotating slowly backwards!
(counterclockwise)

Slide by Steve Seitz



Sampling and aliasing

256x256 128x128 64x64 32x32 [6x16
AU R HNE R mani
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Nyquist-Shannon Sampling Theorem

When sampling a signal at discrete inter\'/'lsl,
the sampling frequency must be > 2 x f

Mmax
f..x = max frequency of the input signal

This will allows to reconstruct the original
perfectly from the sampled version

o oo % 5% /% 4
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Anti-aliasing

Solutions:
= Sample more often

= Get rid of all frequencies that are greater than
half the new sampling frequency
o Will lose information
o But it's better than aliasing
o Apply a smoothing filter



Algorithm for downsampling
by factor of 2

1. Start with image(h, w)
2. Apply low-pass filter

im_blur = imfilter(image, fspecial(‘gaussian’, 7, 1))
3. Sample every other pixel

im_small = im_blur(1:2:end, 1:2:end);



Anti-aliasing

256 x 256 128 x 128 64 x 64 32 x 32 16 x 16

no
smoothing
mm e R
..I.I.I.!'l||'l -......'|‘.'.‘|
Gaussian
o=1
AL ..:.'.'.'.'.'.HI :.l'|l1.~
e Gaussian
o=2

Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.

Forsyth and Ponce 2002



- Subsampling without pre-
I T - s

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Slide by Steve Seitz



Gaussian 1/2

Slide by Steve Seitz



Why does a lower resolution image still make
sense to us? What do we lose?

Image: http://www.flickr.com/photos/igorms/136916757/



http://www.flickr.com/photos/igorms/136916757/

Why do we get different, distance-dependéf
interpretations of hybrid images?




Clues from Human Perception

= Early processing in humans filters for various orientations and
scales of frequency

= Perceptual cues in the mid-high frequencies dominate perception

=  When we see an image from far away, we are effectively
subsampling it

Early Visual Processing: Multi-scale edge and blob filters



Frequency Domain and Perception

8 WA

Campbell-Robson contrast sensitivity curve

slide: A. Efros
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Hybrid Image
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Hybrid Image in FFT

Low-passed Image

200
400
600
800
1000

1200

High-passed Image

100 200 300

400

600

700



Perception i |

Why do we get different, distance-dependéf
interpretations of hybrid images?




Things to Remember

Sometimes it makes sense to
think of images and filtering in the
frequency domain

o Fourier analysis

Can be faster to filter using FFT
for large images (N logN vs. N2 for
auto-correlation)

Remember to low-pass before
sampling




