

计算机视觉表征与识别 Chapter 2: Images and Filtering

王利民

媒体计算课题组

http://mcg.nju.edu.cn/

- What is an image?
- Image formation: light and color
- Image transformation
- Image noise and image smoothing
- Convolution operation
- Media filter

Images as matrices

Result of averaging 100 similar snapshots

Little Leaguer

Kids with Santa

The Graduate

Newlyweds

From: *100 Special Moments*, by Jason Salavon (2004) http://salavon.com/SpecialMoments/SpecialMoments.shtml

Digital camera

A digital camera replaces film with a sensor array

- Each cell in the array is light-sensitive diode that converts photons to electrons
- <u>http://electronics.howstuffworks.com/digital-camera.htm</u>

Slide by S. Seitz

Sensor array

CMOS sensor

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Each sensor cell records amount of light coming in at a small range of orientations

The raster image (pixel matrix)

The raster image (pixel matrix)

0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99
0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91
0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92
0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95
0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85
0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33
0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74
0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93
0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99
0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97
0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93
- Contraction	and the East				138					
1				000 ph:	ilg@mit.ed	iu				

What determines a pixel's intensity

What is an image?

Image formation: light and color

- Image transformation
- Image noise and image smoothing
- Convolution operation
- Media filter

How much light is recorded

Major factors

- Illumination strength and direction
- Surface geometry
- Surface material
- Nearby surfaces
- Camera gain/exposure

Intensity depends on illumination angle because less light comes in at oblique angles.

- $\rho = albedo$
- S = directional source
- N = surface normal
- I = reflected intensity

$$I(x) = \rho(x)(\boldsymbol{S} \cdot \boldsymbol{N}(x))$$

- Diffuse: light scatters in all directions
 - E.g., brick, cloth, rough wood

- Some light is absorbed (function of albedo ρ)
- Remaining light is scattered (diffuse reflection)
- Examples: soft cloth, concrete, matte paints

Specular Reflection

- Reflected direction depends on light orientation and surface normal
 - E.g., mirrors are fully specular
 - Most surfaces can be modeled with a mixture of diffuse and specular components

Flickr, by suzysputnik

Flickr, by piratejohnny

Most surfaces have both specular and diffuse components

Specularity = spot where specular reflection dominates (typically reflects light source)

Typically, specular component is small

When light hits a typical surface

- Some light is absorbed $(1-\rho)$
 - More absorbed for low albedos
- Some light is reflected diffusely
 - Independent of viewing direction
- Some light is reflected specularly
 - Light bounces off (like a mirror), depends on viewing direction

specular

reflection

Θ

Θ

Other possible effects

BRDF: Bidirectional Reflectance Distribution Function

 Model of local reflection that tells how bright a surface appears when viewed from one direction when light falls on it from another

BRDFs can be incredibly complicated.

Slide Credit: L. Lazebnik

Dynamic range and camera response

- Typical scenes have a huge dynamic range
- Camera response is roughly linear in the mid range (15 to 240) but non-linear at the extremes
 - called saturation or undersaturation

Log Exposure (-Target density)

What is color?

- Color is the result of interaction between physical light in the environment and our visual system
- Color is a psychological property of our visual experiences when we look at objects and lights, *not* a physical property of those objects or lights (S. Palmer, *Vision Science: Photons to Phenomenology*)

Color

Light is composed of a spectrum of wavelengths

Slide Credit: Efros

http://www.yorku.ca/eye/photopik.htm

WAVELENGTH (nanometers)

Source: Popular Mechanics

Some examples of the spectra of light sources

Interaction of light and surfaces

 Reflected color is the result of interaction of light source spectrum with surface reflectance

The color of objects

- Colored light arriving at the camera involves two effects
 - The color of the light source (illumination + inter-reflections)
 - The color of the surface

If light is a spectrum, why are images RGB?

Long (red), Medium (green), and Short (blue) cones, plus intensity rods

- Fun facts
 - "M" and "L" on the X-chromosome
 - That's why men are more likely to be color blind (see what it's like:

http://www.vischeck.com/vischeck/vischeckImage.php)

- "L" has high variation, so some women are tetrachromatic
- Some animals have 1 (night animals), 2 (e.g., dogs), 4 (fish, birds), 5 (pigeons, some reptiles/amphibians), or even 12 (mantis shrimp) types of cones

Rods and cones act as *filters* on the spectrum

- To get the output of a filter, multiply its response curve by the spectrum, integrate over all wavelengths
 - Each cone yields one number

How can we represent an entire spectrum with three numbers?

We can't! Most of the information is lost

As a result, two different spectra may appear indistinguishable

such spectra are known as metamers

Slide by Steve Seitz

Matching functions

Let $t(\lambda)$ be the spectrum of the target signal

- Let $c_1(\lambda)$, $c_2(\lambda)$, and $c_3(\lambda)$ be the matching functions, or the amounts of each primary needed to match monochromatic sources with wavelengths λ
- Then the coordinates of t in the corresponding linear space are given by

$$w_p = \int t(\lambda) c_p(\lambda) d\lambda$$

Linear color spaces

Defined by a choice of three primaries

- The coordinates of a color are given by the weights of the primaries used to match it
- In addition to primaries, need to specify matching functions: the amount of each primary needed to match a monochromatic light source at each

Color Sensing: Bayer Grid

Estimate RGB at each cell from neighboring values

Images in Matlab

- Images represented as a matrix
- Suppose we have a NxM RGB image called "im"
 - im(1,1,1) = top-left pixel value in R-channelΟ
 - im(y, x, b) = y pixels down, x pixels to right in the bth channel \bigcirc
 - im(N, M, 3) = bottom-right pixel in B-channel \bigcirc

imread(filename) returns a uint8 image (values 0 to 255)

Convert to double format (values 0 to 1) with im2double \bigcirc

row	
-----	--

\ \ /												R				
vv	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99					
	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91			0		
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.02	0 00			
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.92	0.99			П
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.95	0.91			, В
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.91	0.92	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.97	0.95	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.79	0.85	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.45	0.33	0.97	0.95	
	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	0.79	0.85	
	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.82	0.93	0.45	0.33	
I			0.05	0.73	0.50	0.00	0.45	0.42	0.77	0.75	0.71	0.90	0.99	0.49	0.74	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.82	0.93	
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	
					0.91	0.94	0.89	0.49	0.41	U./8	0.78	U.//	0.89	0.99	0.93	

A pixel's brightness is determined by

- Light source (strength, direction, color)
- Surface orientation
- Surface material and albedo
- Reflected light and shadows from surrounding surfaces
- Gain on the sensor

A pixel's brightness tells us nothing by itself

Slide: Forsyth

And yet we can interpret images...

- Key idea: for nearby scene points, most factors do not change much
- The information is mainly contained in *local* differences of brightness

Darkness = Large Difference in Neighboring Pixels

What is this?

What differences in intensity tell us about shape

- Changes in surface normal
- Texture
- Proximity
- Indents and bumps
- Grooves and creases

Photos Koenderink slides on image texture and the flow of light

- What is an image?
- Image formation: light and color
- Image transformation
- Image noise and image smoothing
- Convolution operation
- Media filter

Image transformations

Image transformations

function

FF $G(\pmb{x}) = F(h\{\pmb{x}\})$ $G(\pmb{x}) = h\{F(\pmb{x})\}$ Filtering Warping GGchanges range of image changes domain of image

s *range* of image function

Point Operation

point processing

Neighborhood Operation

"filtering"

Examples of point processing

How would you implement these?

x

How would you implement these?

x

Examples of point processing

Examples of point processing

How would you implement these?

255 - x

x + 128

Examples of point processing

Image filtering

- Compute a function of the local neighborhood at each pixel in the image
 - Function specified by a "filter" or mask saying how to combine values from neighbors.

Uses of filtering:

- Enhance an image (denoise, resize, etc)
- Extract information (texture, edges, etc)
- Detect patterns (template matching)

Adapted from Derek Hoiem

Image filters in spatial domain

- Filter is a mathematical operation on values of each patch
- Smoothing, sharpening, measuring texture
- Image filters in the frequency domain
 - Filtering is a way to modify the frequencies of images
 - Denoising, sampling, image compression
- Templates and Image Pyramids
 - Filtering is a way to match a template to the image
 - Detection, coarse-to-fine registration

- What is an image?
- Image formation: light and color
- Image transform
- Image noise and image smoothing
- Convolution operation
- Media filter

Motivation: noise reduction

Even multiple images of the same static scene will not be identical.

Common types of noise

- Salt and pepper noise: random occurrences of black and white pixels
- Impulse noise: random occurrences of white pixels
- Gaussian noise:
 variations in intensity
 drawn from a Gaussian
 normal distribution

Original

Salt and pepper noise

Impulse noise

Gaussian noise

Motivation: noise reduction

- Even multiple images of the same static scene will not be identical.
- How could we reduce the noise, i.e., give an estimate of the true intensities?
- What if there's only one image?

- Let's replace each pixel with an average of all the values in its neighborhood
- Assumptions:
 - Expect pixels to be like their neighbors
 - Expect noise processes to be independent from pixel to pixel

- Let's replace each pixel with an average of all the values in its neighborhood
- Moving average in 1D:

Can add weights to our moving average
Weights [1, 1, 1, 1, 1] / 5

Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Moving Average In 2D

F[x, y]

0	0						
	0						
0	0	90	90	90	90	90	
		90	90	90	90	90	
		90	90	90	90	90	
		90		90	90	90	
		90	90	90	90	90	
	90						

G[x, y]

Moving Average In 2D

F[x, y]

0		0	0				
0		0					
0		90	90	90	90	90	
		90	90	90	90	90	
		90	90	90	90	90	
		90		90	90	90	
		90	90	90	90	90	
	90						

G[x, y]

0	10				

Moving Average In 2D

F[x, y]

		0		0			
		90	90	90	90	90	
		90	90	90	90	90	
		90	90	90	90	90	
		90		90	90	90	
		90	90	90	90	90	
	90						

G[x, y]

0	10	20			

Moving Average In 2D

F[x, y]

	0						
	0			0			
	0	90	90	90	90	90	
		90	90	90	90	90	
		90	90	90	90	90	
		90		90	90	90	
		90	90	90	90	90	
	90	0					

G[x, y]

0	10	20	30			

Moving Average In 2D

F[x, y]

		0				0	
		90	90	90	90	90	
		90	90	90	90	90	
		90	90	90	90	90	
		90		90	90	90	
		90	90	90	90	90	
	90						

G[x, y]

0	10	20	30	30		

Moving Average In 2D

F[x, y]

		90	90	90	90	90	
		90	90	90	90	90	
		90	90	90	90	90	
		90		90	90	90	
		90	90	90	90	90	
	90						

G[x, y]

_			_		_			
	10	20	30	30	30	20	10	
	20	40	60	60	60	40	20	
	30	60	90	90	90	60	30	
	30	50	80	80	90	60	30	
	30	50	80	80	90	60	30	
	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10						

Say the averaging window size is
$$2k+1 \times 2k+1$$
:

$$G[i, j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u, j+v]$$
Attribute uniform veight to each pixel Loop over all pixels in neighborhood around image pixel $F[i,j]$

Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i, j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u, v] F[i + u, j + v]$$

Non-uniform weights

kk $G[i,j] = \sum \quad \sum \quad H[u,v]F[i+u,j+v]$ $u \equiv -k v \equiv -k$

This is called cross-correlation, denoted $G = H \otimes F$

Filtering an image: replace each pixel with a linear combination of its neighbors.

The filter "kernel" or "mask" H[u,v] is the prescription for the weights in the linear combination.

Averaging filter

What values belong in the kernel H for the moving average example?

 $G = H \otimes F$

Smoothing by averaging

depicts box filter: white = high value, black = low value

original

filtered

What if the filter size was 5 x 5 instead of 3 x 3?

MATLAB: output size / "shape" options

- shape = 'full': output size is sum of sizes of f and g \bigcirc
- shape = 'same': output size is same as f
- shape = 'valid': output size is difference of sizes of f and g full valid same \boldsymbol{g} g gg g g \boldsymbol{g} \boldsymbol{g} g gg g

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- o methods:
 - clip filter (black)
 - wrap around
 - copy edge
 - reflect across edge

What about near the edge?

- the filter window falls off the edge of the image
- need to extrapolate
- o methods (MATLAB):
 - clip filter (black): imfilter(f, g, 0)
 - wrap around: imfilter(f, g, 'circular')
 - copy edge: imfilter(f, g, 'replicate')
 - reflect across edge: imfilter(f, g, 'symmetric')

Gaussian filter

This kernel is an

function:

What if we want nearest neighboring pixels to have the most influence on the output?

2

4

2

H[u, v]

2

2

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	90	0	90	90	90	0	0
0	0	0	90	90	90	90	90	0	0
0	0	0	0	0	0	0	0	0	0
0	0	90	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

approximation of a 2d
Gaussian function:
$$h(u,v) = \frac{1}{\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

F[x,y]

Removes high-frequency components from the image ("low-pass filter").

 $\frac{1}{16}$

Gaussian filters

- What parameters matter here?
- Size of kernel or mask
 - Note, Gaussian function has infinite support, but discrete filters use finite kernels

Gaussian filters

- What parameters matter here?
- Variance of Gaussian: determines extent of smoothing

Matlab

- >> hsize = 10;
- >> sigma = 5;
- >> h = fspecial('gaussian' hsize, sigma);

- >> mesh(h);
- >> imagesc(h);
- >> outim = imfilter(im, h); % correlation
- >> imshow(outim);

Smoothing with a Gaussian

Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.


```
for sigma=1:3:10
    h = fspecial('gaussian', fsize,
    sigma);
    out = imfilter(im, h);
    imshow(out);
    pause;
end
```


<u>Smoothing</u>

- Values positive
- Sum to 1 \rightarrow constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

- What is an image?
- Image formation: light and color
- Image transform
- Image noise and image smoothing
- Convolution operation
- Media filter

• Let *f* be the image and *g* be the kernel. The output of convolving *f* with *g* is denoted f * g. $(f * g)[m,n] = \sum_{k,l} f[m-k,n-l]g[k,l]$

- Shift invariance: same behavior regardless of pixel location: filter(shift(f)) = shift(filter(f))
- Linearity: filter($f_1 + f_2$) = filter(f_1) + filter(f_2)

 Theoretical result: any linear shift-invariant operator can be represented as a convolution

- Commutative: *a* * *b* = *b* * *a*
 - Conceptually no difference between filter and signal
- Associative: a * (b * c) = (a * b) * c
 - Often apply several filters one after another: (((a * b₁)
 * b₂) * b₃)
 - This is equivalent to applying one filter: a * (b₁ * b₂ * b₃)
- Distributes over addition: a * (b + c) = (a * b) + (a * c)
- Scalars factor out: ka * b = a * kb = k (a * b)
- Identity: unit impulse e = [..., 0, 0, 1, 0, 0, ...],
 a * e = a

Definition of discrete 2D
convolution:

$$(f * g)(x, y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x-i, y-j)$$
Definition of discrete 2D
correlation:

$$(f * g)(x, y) = \sum_{i,j=-\infty}^{\infty} f(i,j)I(x+i, y+j)$$
notice the lack of a

• Most of the time won't matter, because our kernels will be symmetric.

Separability

- In some cases, filter is separable, and we can factor into two steps:
 - Convolve all rows with a 1D filter
 - Convolve all columns with a 1D filter

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & \frac{1}{3} & 0 \end{bmatrix} \circ \begin{bmatrix} 0 & 0 & 0 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix}$$

- What is an image?
- Image formation: light and color
- Image transform
- Image noise and image smoothing
- Convolution operation
- Media filter

Effect of smoothing filters

Additive Gaussian noise

Salt and pepper noise

- No new pixel values introduced
- Removes spikes: good for impulse, salt & pepper noise
- Non-linear filter

Median filter

Salt and Median pepper filtered noise MALA 400 3 00 400 200 500 600 100 300

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Median filter

Median filter is edge preserving

