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Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transformation

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter
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Images as matrices

The GraduateKids with SantaLittle Leaguer

From: 100 Special Moments, by Jason Salavon (2004)

http://salavon.com/SpecialMoments/SpecialMoments.shtml

Newlyweds

Result of averaging 100 similar snapshots



How light is recorded



Digital camera

A digital camera replaces film with a sensor array
◼ Each cell in the array is light-sensitive diode that 

converts photons to electrons
◼ http://electronics.howstuffworks.com/digital-camera.htm

Slide by S. Seitz

http://electronics.howstuffworks.com/digital-camera.htm


Sensor array

Each sensor cell records amount of light coming in at a small range of orientations

CMOS sensor



The raster image (pixel matrix)



The raster image (pixel matrix)
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What determines a pixel’s intensity
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How much light is recorded

◼ Major factors

 Illumination strength 

and direction

 Surface geometry

 Surface material 

 Nearby surfaces

 Camera gain/exposure

Light emitted

Sensor

Light reflected to 

camera



Intensity and Surface Orientation

Intensity depends on illumination angle because 

less light comes in at oblique angles.

𝜌 = albedo

𝑺 = directional source

𝑵 = surface normal

I = reflected intensity

𝐼 𝑥 = 𝜌 𝑥 𝑺 ⋅ 𝑵(𝑥)

Slide: Forsyth



Basic models of reflection

◼ Specular: light bounces off at the 

incident angle

 E.g., mirror

◼ Diffuse: light scatters in all directions

 E.g., brick, cloth, rough wood

incoming lightspecular reflection

ΘΘ

incoming lightdiffuse reflection



Lambertian reflectance model

◼ Some light is absorbed (function of albedo 𝜌)

◼ Remaining light is scattered (diffuse 

reflection)

◼ Examples: soft cloth, concrete, matte paints

light sourcelight source

absorption

diffuse reflection

(1 − 𝜌)

𝜌



Specular Reflection

◼ Reflected direction depends on 

light orientation and surface 

normal

 E.g., mirrors are fully specular

 Most surfaces can be modeled with 

a mixture of diffuse and specular 

components
light source

specular reflection

Flickr, by suzysputnik

Flickr, by piratejohnny
ΘΘ



Most surfaces have both specular and 

diffuse components

◼ Specularity = spot where specular reflection 

dominates (typically reflects light source)

Typically, specular component is 

small



Recap

◼ When light hits a typical surface

 Some light is absorbed (1-𝜌)

◼ More absorbed for low albedos

 Some light is reflected diffusely

◼ Independent of viewing direction

 Some light is reflected specularly

◼ Light bounces off (like a mirror), depends 

on viewing direction specular 

reflection

ΘΘ

diffuse 

reflection

absorption



Other possible effects

light sourcetransparency light source

refraction



λ

light source

subsurface 

scattering



λ1

light source

λ2

fluorescence

t=1

light source

t>1

phosphorescence



BRDF: Bidirectional Reflectance 

Distribution Function
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Slide credit: S. Savarese

• Model of local reflection that tells how bright a surface 

appears when viewed from one direction when light falls on 

it from another



BRDFs can be incredibly complicated…

Slide Credit: L. Lazebnik



Dynamic range and camera response

◼ Typical scenes have a 

huge dynamic range 

◼ Camera response is 

roughly linear in the 

mid range (15 to 240) 

but non-linear at the 

extremes

 called saturation or 

undersaturation



What is color?

◼ Color is the result of 

interaction between physical 

light in the environment and 

our visual system

◼ Color is a psychological 

property of our visual 

experiences when we look at 

objects and lights, 

not a physical property of 

those objects or lights 

(S. Palmer, Vision Science: 

Photons to Phenomenology)



Color

http://www.yorku.ca/eye/photopik.htm

Human Luminance Sensitivity Function

Slide Credit: Efros

Light is composed of a spectrum of wavelengths



Spectra of light sources

Source: Popular Mechanics

http://www.popularmechanics.com/technology/gadgets/tests/incandescent-vs-compact-fluorescent-vs-led-ultimate-light-bulb-test#slide-1


Some examples of the 

spectra of light sources

.
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©  Stephen E. Palmer, 2002



Some examples of the

reflectance spectra of surfaces

Wavelength (nm)
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Red

400          700

Yellow

400          700

Blue

400          700

Purple

400          700

©  Stephen E. Palmer, 2002



Interaction of light and surfaces

◼ Reflected color is the 

result of interaction of light 

source spectrum with 

surface reflectance



The color of objects

◼ Colored light arriving at the camera involves two 

effects

 The color of the light source (illumination + inter-reflections)

 The color of the surface

Slide: Forsyth



Why RGB?

If light is a spectrum, why are images RGB?



Human color receptors

Long (red), Medium (green), and Short (blue) cones, plus intensity rods

◼ Fun facts

 “M” and “L” on the X-chromosome

◼ That’s why men are more likely to be color blind (see what 

it’s like: 

http://www.vischeck.com/vischeck/vischeckImage.php)

 “L” has high variation, so some women are tetrachromatic

 Some animals have 1 (night animals), 2 (e.g., dogs), 4 (fish, 

birds), 5 (pigeons, some reptiles/amphibians), or even 12 

(mantis shrimp) types of cones

http://en.wikipedia.org/wiki/Color_vision

http://www.vischeck.com/vischeck/vischeckImage.php
http://en.wikipedia.org/wiki/Color_vision


Color perception

Rods and cones act as filters on the spectrum

 To get the output of a filter, multiply its response curve by the 

spectrum, integrate over all wavelengths

◼ Each cone yields one number

S

M L

Wavelength

Power        

How can we represent an entire spectrum with three numbers?

We can’t!  Most of the information is lost

As a result, two different spectra may appear indistinguishable

such spectra are known as metamers Slide by Steve Seitz



Matching functions
◼ Let 𝑡(𝜆) be the spectrum of the target signal 

◼ Let 𝑐1(𝜆), 𝑐2(𝜆), and 𝑐3(𝜆) be the matching functions, 

or the amounts of each primary needed to match 

monochromatic sources with wavelengths 𝜆

◼ Then the coordinates of 𝑡 in the corresponding linear 

space are given by 

𝑤𝑝 = න𝑡 𝜆 𝑐𝑝 𝜆 𝑑𝜆

𝜆

Target signal 𝑡(𝜆)

Matching functions act as 

filters on the target spectrum, 

like response curves of color 

receptors!

𝑐1(𝜆)
𝑐2(𝜆)

𝑐3(𝜆)



Linear color spaces
◼ Defined by a choice of three primaries 

◼ The coordinates of a color are given by the weights of 

the primaries used to match it

◼ In addition to primaries, need to specify matching 

functions: the amount of each primary needed to 

match a monochromatic light source at each 

wavelength
RGB matching 

functions

RGB primaries



Color Sensing: Bayer Grid

◼ Estimate RGB at 

each cell from 

neighboring values

http://en.wikipedia.org/wiki/Bayer_filter Slide by Steve Seitz

http://en.wikipedia.org/wiki/Bayer_filter


Color Image
R

G

B



Images in Matlab

◼ Images represented as a matrix

◼ Suppose we have a NxM RGB image called “im”
 im(1,1,1) = top-left pixel value in R-channel

 im(y, x, b) = y pixels down, x pixels to right in the bth channel

 im(N, M, 3) = bottom-right pixel in B-channel

◼ imread(filename) returns a uint8 image (values 0 to 255)
 Convert to double format (values 0 to 1) with im2double
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The plight of the poor pixel

◼ A pixel’s brightness is determined by
 Light source (strength, direction, color)

 Surface orientation

 Surface material and albedo

 Reflected light and shadows from surrounding 
surfaces

 Gain on the sensor

◼ A pixel’s brightness tells us nothing by itself





Photo by nickwheeleroz, Flickr Slide: Forsyth



And yet we can interpret images…

◼ Key idea: for nearby scene points, most factors 
do not change much

◼ The information is mainly contained in local 
differences of brightness



Darkness = Large Difference in 

Neighboring Pixels



What is this?





What differences in intensity tell 

us about shape

◼ Changes in surface normal

◼ Texture

◼ Proximity

◼ Indents and bumps

◼ Grooves and creases

Photos Koenderink slides on image texture and the flow of light



Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transformation

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter
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Image transformations

changes pixel values changes pixel locations

Filtering Warping



Image transformations

changes range of image 

function

changes domain of image 

function

Filtering Warping



Image filtering

Point Operation

Neighborhood Operation

point processing

“filtering”



Examples of point processing

original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten
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Image filtering

◼ Compute a function of the local neighborhood at 

each pixel in the image

 Function specified by a “filter” or mask saying how to 

combine values from neighbors.

◼ Uses of filtering:

 Enhance an image (denoise, resize, etc)

 Extract information (texture, edges, etc)

 Detect patterns (template matching)
Adapted from Derek Hoiem



Three views of filtering

◼ Image filters in spatial domain
 Filter is a mathematical operation on values of each patch

 Smoothing, sharpening, measuring texture

◼ Image filters in the frequency domain
 Filtering is a way to modify the frequencies of images

 Denoising, sampling, image compression

◼ Templates and Image Pyramids
 Filtering is a way to match a template to the image

 Detection, coarse-to-fine registration



Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transform

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter
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Motivation: noise reduction

◼ Even multiple images of the same static scene will 

not be identical.



Common types of noise

 Salt and pepper noise: 

random occurrences of   

black and white pixels

 Impulse noise: random 

occurrences of white 

pixels

 Gaussian noise: 

variations in intensity 

drawn from a Gaussian 

normal distribution



Motivation: noise reduction

◼ Even multiple images of the same static scene will 

not be identical.

◼ How could we reduce the noise, i.e., give an 

estimate of the true intensities?

◼ What if there’s only one image?



First attempt at a solution

• Let’s replace each pixel with an average of all 

the values in its neighborhood

• Assumptions: 

 Expect pixels to be like their neighbors

 Expect noise processes to be independent from 

pixel to pixel



First attempt at a solution

• Let’s replace each pixel with an average of all 

the values in its neighborhood

• Moving average in 1D:



Weighted Moving Average

◼ Can add weights to our moving average

◼ Weights [1, 1, 1, 1, 1]  / 5 



Weighted Moving Average

◼ Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner



Moving Average In 2D
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Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
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Source: S. Seitz



Moving Average In 2D
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Moving Average In 2D
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0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0
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Moving Average In 2D
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Moving Average In 2D
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Source: S. Seitz



Correlation filtering
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood 

around  image pixel F[i,j]

Attribute uniform 

weight to each pixel

Now generalize to allow different weights depending on  

neighboring pixel’s relative position:

Non-uniform weights



Correlation filtering

Filtering an image: replace each pixel with a linear 

combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the 

weights in the linear combination.

This is called cross-correlation, denoted 



Averaging filter
◼ What values belong in the kernel H for the moving 

average example?

0 20 40 60 60

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

“box filter”

?



Smoothing by averaging
depicts box filter: 

white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?



Boundary issues

MATLAB: output size / “shape” options

 shape = ‘full’: output size is sum of sizes of f and g

 shape = ‘same’: output size is same as f

 shape = ‘valid’: output size is difference of sizes of f and g 

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik



Boundary issues

◼ What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods:

◼ clip filter (black)

◼ wrap around

◼ copy edge

◼ reflect across edge

Source: S. Marschner



Boundary issues

◼ What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods (MATLAB):

◼ clip filter (black): imfilter(f, g, 0)

◼ wrap around: imfilter(f, g, ‘circular’)

◼ copy edge: imfilter(f, g, ‘replicate’)

◼ reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner



Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

◼ What if we want nearest neighboring pixels to have 

the most influence on the output?

◼ Removes high-frequency components from the 

image (“low-pass filter”).

This kernel is an 
approximation of a 2d 

Gaussian function:



Smoothing with a Gaussian



Gaussian filters

◼ What parameters matter here?

◼ Size of kernel or mask

 Note, Gaussian function has infinite support, but 

discrete filters use finite kernels

σ = 5 with 10 x 10 kernel σ = 5 with 30 x 30 kernel



Gaussian filters
◼ What parameters matter here?

◼ Variance of Gaussian: determines extent of 

smoothing

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel



Matlab
>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation 

>> imshow(outim);

outim



Smoothing with a Gaussian

for sigma=1:3:10 

h = fspecial('gaussian‘, fsize, 

sigma);

out = imfilter(im, h); 

imshow(out);

pause; 

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian 

kernel, and controls the amount of smoothing.



Properties of smoothing filters

◼ Smoothing
 Values positive 

 Sum to 1 → constant regions same as input

 Amount of smoothing proportional to mask size

 Remove “high-frequency” components; “low-pass” filter



Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transform

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter
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Defining convolution

(𝑓 ∗ 𝑔)[𝑚, 𝑛] = ෍

𝑘,𝑙

𝑓[𝑚 − 𝑘, 𝑛 − 𝑙]𝑔[𝑘, 𝑙]

f

• Let f be the image and g be the kernel. The 

output of convolving f with g is denoted f * g.

Convention: 

kernel is “flipped”



Key properties

• Shift invariance: same 

behavior regardless of 

pixel location:

filter(shift(f)) = shift(filter(f))

• Linearity:

filter(f1 + f2) = 

filter(f1) + filter(f2)

• Theoretical result: any linear shift-invariant 

operator can be represented as a convolution



Properties in more detail

• Commutative: a * b = b * a

 Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c

 Often apply several filters one after another: (((a * b1) 

* b2) * b3)

 This is equivalent to applying one filter: a * (b1 * b2 * 

b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a



Convolution vs correlation

Definition of discrete 2D 
convolution: notice the flip

Definition of discrete 2D 
correlation:

notice the lack of a 
flip

• Most of the time won’t matter, because our kernels will be symmetric.



Separability
◼ In some cases, filter is separable, and we can factor into 

two steps:

 Convolve all rows with a 1D filter

 Convolve all columns with a 1D filter



Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transform

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter
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Effect of smoothing filters

Additive Gaussian noise Salt and pepper noise



Median filter

• No new pixel values 

introduced

• Removes spikes: good 

for impulse, salt & 

pepper noise

• Non-linear filter



Median filter

Salt and 

pepper 

noise

Median 

filtered

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);



Median filter
◼ Median filter is edge preserving


