
2021/3/9 1

计算机视觉表征与识别
Chapter 2: Images and Filtering

王利民

媒体计算课题组

http://mcg.nju.edu.cn/

Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transformation

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter

2021/3/9 2

Images as matrices

The GraduateKids with SantaLittle Leaguer

From: 100 Special Moments, by Jason Salavon (2004)

http://salavon.com/SpecialMoments/SpecialMoments.shtml

Newlyweds

Result of averaging 100 similar snapshots

How light is recorded

Digital camera

A digital camera replaces film with a sensor array
◼ Each cell in the array is light-sensitive diode that

converts photons to electrons
◼ http://electronics.howstuffworks.com/digital-camera.htm

Slide by S. Seitz

http://electronics.howstuffworks.com/digital-camera.htm

Sensor array

Each sensor cell records amount of light coming in at a small range of orientations

CMOS sensor

The raster image (pixel matrix)

The raster image (pixel matrix)
0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

What determines a pixel’s intensity

Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transformation

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter

2021/3/9 10

How much light is recorded

◼ Major factors

 Illumination strength

and direction

 Surface geometry

 Surface material

 Nearby surfaces

 Camera gain/exposure

Light emitted

Sensor

Light reflected to

camera

Intensity and Surface Orientation

Intensity depends on illumination angle because

less light comes in at oblique angles.

𝜌 = albedo

𝑺 = directional source

𝑵 = surface normal

I = reflected intensity

𝐼 𝑥 = 𝜌 𝑥 𝑺 ⋅ 𝑵(𝑥)

Slide: Forsyth

Basic models of reflection

◼ Specular: light bounces off at the

incident angle

 E.g., mirror

◼ Diffuse: light scatters in all directions

 E.g., brick, cloth, rough wood

incoming lightspecular reflection

ΘΘ

incoming lightdiffuse reflection

Lambertian reflectance model

◼ Some light is absorbed (function of albedo 𝜌)

◼ Remaining light is scattered (diffuse

reflection)

◼ Examples: soft cloth, concrete, matte paints

light sourcelight source

absorption

diffuse reflection

(1 − 𝜌)

𝜌

Specular Reflection

◼ Reflected direction depends on

light orientation and surface

normal

 E.g., mirrors are fully specular

 Most surfaces can be modeled with

a mixture of diffuse and specular

components
light source

specular reflection

Flickr, by suzysputnik

Flickr, by piratejohnny
ΘΘ

Most surfaces have both specular and

diffuse components

◼ Specularity = spot where specular reflection

dominates (typically reflects light source)

Typically, specular component is

small

Recap

◼ When light hits a typical surface

 Some light is absorbed (1-𝜌)

◼ More absorbed for low albedos

 Some light is reflected diffusely

◼ Independent of viewing direction

 Some light is reflected specularly

◼ Light bounces off (like a mirror), depends

on viewing direction specular

reflection

ΘΘ

diffuse

reflection

absorption

Other possible effects

light sourcetransparency light source

refraction

λ

light source

subsurface

scattering

λ1

light source

λ2

fluorescence

t=1

light source

t>1

phosphorescence

BRDF: Bidirectional Reflectance

Distribution Function

=);,,,( eeii

surface normal









dcos),(L

),(L

),(E

),(L

iiii

eee

iii

eee =

Slide credit: S. Savarese

• Model of local reflection that tells how bright a surface

appears when viewed from one direction when light falls on

it from another

BRDFs can be incredibly complicated…

Slide Credit: L. Lazebnik

Dynamic range and camera response

◼ Typical scenes have a

huge dynamic range

◼ Camera response is

roughly linear in the

mid range (15 to 240)

but non-linear at the

extremes

 called saturation or

undersaturation

What is color?

◼ Color is the result of

interaction between physical

light in the environment and

our visual system

◼ Color is a psychological

property of our visual

experiences when we look at

objects and lights,

not a physical property of

those objects or lights

(S. Palmer, Vision Science:

Photons to Phenomenology)

Color

http://www.yorku.ca/eye/photopik.htm

Human Luminance Sensitivity Function

Slide Credit: Efros

Light is composed of a spectrum of wavelengths

Spectra of light sources

Source: Popular Mechanics

http://www.popularmechanics.com/technology/gadgets/tests/incandescent-vs-compact-fluorescent-vs-led-ultimate-light-bulb-test#slide-1

Some examples of the

spectra of light sources

.

#
 P

h
o

to
n

s

D. Normal Daylight

Wavelength (nm.)

B. Gallium Phosphide Crystal

400 500 600 700

#
 P

h
o

to
n

s

Wavelength (nm.)

A. Ruby Laser

400 500 600 700

400 500 600 700

#
 P

h
o

to
n

s

C. Tungsten Lightbulb

400 500 600 700

#
 P

h
o

to
n

s

© Stephen E. Palmer, 2002

Some examples of the

reflectance spectra of surfaces

Wavelength (nm)

%
 P

h
o
to

n
s
 R

e
fl
e
c
te

d

Red

400 700

Yellow

400 700

Blue

400 700

Purple

400 700

© Stephen E. Palmer, 2002

Interaction of light and surfaces

◼ Reflected color is the

result of interaction of light

source spectrum with

surface reflectance

The color of objects

◼ Colored light arriving at the camera involves two

effects

 The color of the light source (illumination + inter-reflections)

 The color of the surface

Slide: Forsyth

Why RGB?

If light is a spectrum, why are images RGB?

Human color receptors

Long (red), Medium (green), and Short (blue) cones, plus intensity rods

◼ Fun facts

 “M” and “L” on the X-chromosome

◼ That’s why men are more likely to be color blind (see what

it’s like:

http://www.vischeck.com/vischeck/vischeckImage.php)

 “L” has high variation, so some women are tetrachromatic

 Some animals have 1 (night animals), 2 (e.g., dogs), 4 (fish,

birds), 5 (pigeons, some reptiles/amphibians), or even 12

(mantis shrimp) types of cones

http://en.wikipedia.org/wiki/Color_vision

http://www.vischeck.com/vischeck/vischeckImage.php
http://en.wikipedia.org/wiki/Color_vision

Color perception

Rods and cones act as filters on the spectrum

 To get the output of a filter, multiply its response curve by the

spectrum, integrate over all wavelengths

◼ Each cone yields one number

S

M L

Wavelength

Power

How can we represent an entire spectrum with three numbers?

We can’t! Most of the information is lost

As a result, two different spectra may appear indistinguishable

such spectra are known as metamers Slide by Steve Seitz

Matching functions
◼ Let 𝑡(𝜆) be the spectrum of the target signal

◼ Let 𝑐1(𝜆), 𝑐2(𝜆), and 𝑐3(𝜆) be the matching functions,

or the amounts of each primary needed to match

monochromatic sources with wavelengths 𝜆

◼ Then the coordinates of 𝑡 in the corresponding linear

space are given by

𝑤𝑝 = න𝑡 𝜆 𝑐𝑝 𝜆 𝑑𝜆

𝜆

Target signal 𝑡(𝜆)

Matching functions act as

filters on the target spectrum,

like response curves of color

receptors!

𝑐1(𝜆)
𝑐2(𝜆)

𝑐3(𝜆)

Linear color spaces
◼ Defined by a choice of three primaries

◼ The coordinates of a color are given by the weights of

the primaries used to match it

◼ In addition to primaries, need to specify matching

functions: the amount of each primary needed to

match a monochromatic light source at each

wavelength
RGB matching

functions

RGB primaries

Color Sensing: Bayer Grid

◼ Estimate RGB at

each cell from

neighboring values

http://en.wikipedia.org/wiki/Bayer_filter Slide by Steve Seitz

http://en.wikipedia.org/wiki/Bayer_filter

Color Image
R

G

B

Images in Matlab

◼ Images represented as a matrix

◼ Suppose we have a NxM RGB image called “im”
 im(1,1,1) = top-left pixel value in R-channel

 im(y, x, b) = y pixels down, x pixels to right in the bth channel

 im(N, M, 3) = bottom-right pixel in B-channel

◼ imread(filename) returns a uint8 image (values 0 to 255)
 Convert to double format (values 0 to 1) with im2double

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

0.92 0.93 0.94 0.97 0.62 0.37 0.85 0.97 0.93 0.92 0.99

0.95 0.89 0.82 0.89 0.56 0.31 0.75 0.92 0.81 0.95 0.91

0.89 0.72 0.51 0.55 0.51 0.42 0.57 0.41 0.49 0.91 0.92

0.96 0.95 0.88 0.94 0.56 0.46 0.91 0.87 0.90 0.97 0.95

0.71 0.81 0.81 0.87 0.57 0.37 0.80 0.88 0.89 0.79 0.85

0.49 0.62 0.60 0.58 0.50 0.60 0.58 0.50 0.61 0.45 0.33

0.86 0.84 0.74 0.58 0.51 0.39 0.73 0.92 0.91 0.49 0.74

0.96 0.67 0.54 0.85 0.48 0.37 0.88 0.90 0.94 0.82 0.93

0.69 0.49 0.56 0.66 0.43 0.42 0.77 0.73 0.71 0.90 0.99

0.79 0.73 0.90 0.67 0.33 0.61 0.69 0.79 0.73 0.93 0.97

0.91 0.94 0.89 0.49 0.41 0.78 0.78 0.77 0.89 0.99 0.93

R

G

B

row
column

The plight of the poor pixel

◼ A pixel’s brightness is determined by
 Light source (strength, direction, color)

 Surface orientation

 Surface material and albedo

 Reflected light and shadows from surrounding
surfaces

 Gain on the sensor

◼ A pixel’s brightness tells us nothing by itself

Photo by nickwheeleroz, Flickr Slide: Forsyth

And yet we can interpret images…

◼ Key idea: for nearby scene points, most factors
do not change much

◼ The information is mainly contained in local
differences of brightness

Darkness = Large Difference in

Neighboring Pixels

What is this?

What differences in intensity tell

us about shape

◼ Changes in surface normal

◼ Texture

◼ Proximity

◼ Indents and bumps

◼ Grooves and creases

Photos Koenderink slides on image texture and the flow of light

Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transformation

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter

2021/3/9 48

Image transformations

changes pixel values changes pixel locations

Filtering Warping

Image transformations

changes range of image

function

changes domain of image

function

Filtering Warping

Image filtering

Point Operation

Neighborhood Operation

point processing

“filtering”

Examples of point processing

original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

Examples of point processing

original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Examples of point processing

original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Examples of point processing

original lower contrast
non-linear lower

contrast
darken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Examples of point processing

original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Examples of point processing

original lower contrast
non-linear lower

contrast
darken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Examples of point processing

original lower contrast non-linear lower contrastdarken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Examples of point processing

original lower contrast
non-linear lower

contrast
darken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Examples of point processing

original lower contrast
non-linear lower

contrast
darken

invert raise contrast non-linear raise contrastlighten

How would you implement these?

Image filtering

◼ Compute a function of the local neighborhood at

each pixel in the image

 Function specified by a “filter” or mask saying how to

combine values from neighbors.

◼ Uses of filtering:

 Enhance an image (denoise, resize, etc)

 Extract information (texture, edges, etc)

 Detect patterns (template matching)
Adapted from Derek Hoiem

Three views of filtering

◼ Image filters in spatial domain
 Filter is a mathematical operation on values of each patch

 Smoothing, sharpening, measuring texture

◼ Image filters in the frequency domain
 Filtering is a way to modify the frequencies of images

 Denoising, sampling, image compression

◼ Templates and Image Pyramids
 Filtering is a way to match a template to the image

 Detection, coarse-to-fine registration

Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transform

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter

2021/3/9 63

Motivation: noise reduction

◼ Even multiple images of the same static scene will

not be identical.

Common types of noise

 Salt and pepper noise:

random occurrences of

black and white pixels

 Impulse noise: random

occurrences of white

pixels

 Gaussian noise:

variations in intensity

drawn from a Gaussian

normal distribution

Motivation: noise reduction

◼ Even multiple images of the same static scene will

not be identical.

◼ How could we reduce the noise, i.e., give an

estimate of the true intensities?

◼ What if there’s only one image?

First attempt at a solution

• Let’s replace each pixel with an average of all

the values in its neighborhood

• Assumptions:

 Expect pixels to be like their neighbors

 Expect noise processes to be independent from

pixel to pixel

First attempt at a solution

• Let’s replace each pixel with an average of all

the values in its neighborhood

• Moving average in 1D:

Weighted Moving Average

◼ Can add weights to our moving average

◼ Weights [1, 1, 1, 1, 1] / 5

Weighted Moving Average

◼ Non-uniform weights [1, 4, 6, 4, 1] / 16

Source: S. Marschner

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Source: S. Seitz

Moving Average In 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

Source: S. Seitz

Correlation filtering
Say the averaging window size is 2k+1 x 2k+1:

Loop over all pixels in neighborhood

around image pixel F[i,j]

Attribute uniform

weight to each pixel

Now generalize to allow different weights depending on

neighboring pixel’s relative position:

Non-uniform weights

Correlation filtering

Filtering an image: replace each pixel with a linear

combination of its neighbors.

The filter “kernel” or “mask” H[u,v] is the prescription for the

weights in the linear combination.

This is called cross-correlation, denoted

Averaging filter
◼ What values belong in the kernel H for the moving

average example?

0 20 40 60 60

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

111

111

111

“box filter”

?

Smoothing by averaging
depicts box filter:

white = high value, black = low value

original filtered

What if the filter size was 5 x 5 instead of 3 x 3?

Boundary issues

MATLAB: output size / “shape” options

 shape = ‘full’: output size is sum of sizes of f and g

 shape = ‘same’: output size is same as f

 shape = ‘valid’: output size is difference of sizes of f and g

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Source: S. Lazebnik

Boundary issues

◼ What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods:

◼ clip filter (black)

◼ wrap around

◼ copy edge

◼ reflect across edge

Source: S. Marschner

Boundary issues

◼ What about near the edge?

 the filter window falls off the edge of the image

 need to extrapolate

 methods (MATLAB):

◼ clip filter (black): imfilter(f, g, 0)

◼ wrap around: imfilter(f, g, ‘circular’)

◼ copy edge: imfilter(f, g, ‘replicate’)

◼ reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner

Gaussian filter

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 2 1

2 4 2

1 2 1

◼ What if we want nearest neighboring pixels to have

the most influence on the output?

◼ Removes high-frequency components from the

image (“low-pass filter”).

This kernel is an
approximation of a 2d

Gaussian function:

Smoothing with a Gaussian

Gaussian filters

◼ What parameters matter here?

◼ Size of kernel or mask

 Note, Gaussian function has infinite support, but

discrete filters use finite kernels

σ = 5 with 10 x 10 kernel σ = 5 with 30 x 30 kernel

Gaussian filters
◼ What parameters matter here?

◼ Variance of Gaussian: determines extent of

smoothing

σ = 2 with 30 x 30 kernel σ = 5 with 30 x 30 kernel

Matlab
>> hsize = 10;

>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h);

>> imagesc(h);

>> outim = imfilter(im, h); % correlation

>> imshow(outim);

outim

Smoothing with a Gaussian

for sigma=1:3:10

h = fspecial('gaussian‘, fsize,

sigma);

out = imfilter(im, h);

imshow(out);

pause;

end

…

Parameter σ is the “scale” / “width” / “spread” of the Gaussian

kernel, and controls the amount of smoothing.

Properties of smoothing filters

◼ Smoothing
 Values positive

 Sum to 1 → constant regions same as input

 Amount of smoothing proportional to mask size

 Remove “high-frequency” components; “low-pass” filter

Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transform

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter

2021/3/9 91

Defining convolution

(𝑓 ∗ 𝑔)[𝑚, 𝑛] = ෍

𝑘,𝑙

𝑓[𝑚 − 𝑘, 𝑛 − 𝑙]𝑔[𝑘, 𝑙]

f

• Let f be the image and g be the kernel. The

output of convolving f with g is denoted f * g.

Convention:

kernel is “flipped”

Key properties

• Shift invariance: same

behavior regardless of

pixel location:

filter(shift(f)) = shift(filter(f))

• Linearity:

filter(f1 + f2) =

filter(f1) + filter(f2)

• Theoretical result: any linear shift-invariant

operator can be represented as a convolution

Properties in more detail

• Commutative: a * b = b * a

 Conceptually no difference between filter and signal

• Associative: a * (b * c) = (a * b) * c

 Often apply several filters one after another: (((a * b1)

* b2) * b3)

 This is equivalent to applying one filter: a * (b1 * b2 *

b3)

• Distributes over addition: a * (b + c) = (a * b) + (a * c)

• Scalars factor out: ka * b = a * kb = k (a * b)

• Identity: unit impulse e = […, 0, 0, 1, 0, 0, …],

a * e = a

Convolution vs correlation

Definition of discrete 2D
convolution: notice the flip

Definition of discrete 2D
correlation:

notice the lack of a
flip

• Most of the time won’t matter, because our kernels will be symmetric.

Separability
◼ In some cases, filter is separable, and we can factor into

two steps:

 Convolve all rows with a 1D filter

 Convolve all columns with a 1D filter

Overview

◼ What is an image?

◼ Image formation: light and color

◼ Image transform

◼ Image noise and image smoothing

◼ Convolution operation

◼ Media filter

2021/3/9 97

Effect of smoothing filters

Additive Gaussian noise Salt and pepper noise

Median filter

• No new pixel values

introduced

• Removes spikes: good

for impulse, salt &

pepper noise

• Non-linear filter

Median filter

Salt and

pepper

noise

Median

filtered

Plots of a row of the image

Matlab: output im = medfilt2(im, [h w]);

Median filter
◼ Median filter is edge preserving

