
Computer Vision: Representation and Recognition
Assignment 3

171860607, Jinbin Bai, jinbin5bai@gmail.com

June 3, 2021

1 Image Mosaics
1.1 Getting correspondences
The code was implemented in the function

1 de f get t ing_correspondences (A,B, numPoints=8)

This function takes two image addresses as input and two lists of coordinates of some points (default
is 8 in total and you can adjust it to any even number) as output. And this function mainly uses
ginput to obtain some points you choose.

1.2 Computing the homography parameters
The code was implemented in the function

1 de f computing_homography_parameters (ptA , ptB)

This function takes two lists of coordinates from two images as input and homography matrix as
output. In this function, we first nomalize the point sets, then try to solve an linear equation(1.1).[

−x1 −y1 −1 0 0 0 x1x2 y1x2 x2

0 0 0 −x1 −y1 −1 x1y2 y1y2 y2

]
H = 0 (1.1)

Then we reshape H to a 3x3 matrix and add some normalization on it.

In order to verify our function, we wirte a function

1 de f verify_homography_matrix (imgA , imgB ,H)

In this function, when you click on the point in the picture on the left, the corresponding point in
the picture on the right will be marked. Figure 1 shows some points our function marked.

Figure 1: verify homography matrix

1

mailto:jinbin5bai@gmail.com

2021, Spring Computer Vision: Representation and Recognition Assignment 3

1.3 Warping between image planes
The code was implemented in the function

1 de f computing_homography_parameters (ptA , ptB)
In this function, we take the recovered homography matrix and an image as input, and we try to
obtain the mapping relationship of each point coordinate, then we get a mapped picture size to
finish transformation. Figure 2 shows transformed picture our function done.

Figure 2: transformed picture

To avoid holes in the output, we then use an inverse warp to fill in the black area on the right
side of the picture and the black holes in the middle. As a result, Figure 3 shows transformed
picture after inverse warpping.

Figure 3: transformed picture after inverse warpping

1.4 Create the output mosaic
The code was implemented also in the part 3 of the function

1 de f computing_homography_parameters (ptA , ptB)
In this part, we first calculate the output size and then mapping both two images to the output
images. As a result, Figure 4 shows our final output.

1.5 After writing and debugging your system
Apply your system to the provided pair of images, and display the output mosaic. The
picture was show in Figure 4.

2

2021, Spring Computer Vision: Representation and Recognition Assignment 3

Figure 4: mosaic picture

Show one additional example of a mosaic you create using images that you have
taken. The picture was show in Figure 5 and Figure 6.

Figure 5: Source Images

Figure 6: Target Image

Warp one image into a “frame” region in the second image. The picture was show in
Figure 7 and Figure 8. One thing to note is in order to meet the requirements of this task, we slightly
modified the code of part 3, we first print the picture on the right, and then print the picture on
the left to prevent the picture on the left from being overwritten. In addition, part 2 fills the black
parts and holes of the image generated after the transformation of the left image, which modifies
the shape of the left image, so we commented out part 2 temporarily in this topic.

3

2021, Spring Computer Vision: Representation and Recognition Assignment 3

Figure 7: Source Images

Figure 8: Target Image

4

2021, Spring Computer Vision: Representation and Recognition Assignment 3

2 Automatic Image Mosaics
2.1 Use VLFeat to automatically obtain interest points and descriptors
The code was implemented in the function

1 de f ge t t ing_cor r e spondence s_s i f t (img1_url , img2_url)
In this part, we first use cv2.SIFT_create to obtain key points and descriptors, then we use knnMatch
algorithm to obtain some pairs of points which is the most matched. Some results are drawed in
Figure 1.1

Figure 9: SIFT

2.2 Implement RANSAC for robustly estimating the homography matrix
from noisy correspondences

In this part, we first use SIFT to obtain enough key points pairs, then use a RANSAC method to
process our point pairs and remove some outliers. Figure 10 and Figure 11 show difference between
whether using RANSAC or not.

Figure 10: Without using RANSAC

We can easily find that Figure 10 is worse. That is because if we donnot remove some outliers
points which affect the parameters of H Significantly, these points will greatly change the value of
H, which makes the resulting image very poor.

5

2021, Spring Computer Vision: Representation and Recognition Assignment 3

Figure 11: Using RANSAC

More details about H are listed in following. H1 means without using RANSAC and H2 means
using RANSAC.

1 H1 : [[1 .22562159 e−01 −1.00657850 e+00 4.66088966 e +02]
2 [7 .15784504 e−02 −5.71116019e−01 2.89298874 e +02]
3 [1 .60548148 e−04 −1.96684707e−03 1.00000000 e +00]]
4 H2 : [[1 .26819326 e+00 −9.46937197e−02 −5.47546091 e +02]
5 [1 .63669337 e−01 1.17493177 e+00 −1.53238342 e +02]
6 [2 .70966020 e−04 −1.76559314e−05 1.00000000 e +00]]
7 D i f f e r e n c e between the two m a t r i c i e s :
8 [[−1.14563110 e+00 −9.11884785e−01 1.01363506 e +03]
9 [−9.20908865 e−02 −1.74604779 e+00 4.42537216 e +02]

10 [−1.10417872 e−04 −1.94919114e−03 0.00000000 e +00]]
11 Total e r r o r = 162 .0

6

	Image Mosaics
	Getting correspondences
	Computing the homography parameters
	Warping between image planes
	Create the output mosaic
	After writing and debugging your system

	Automatic Image Mosaics
	Use VLFeat to automatically obtain interest points and descriptors
	Implement RANSAC for robustly estimating the homography matrix from noisy correspondences

