
Computer Vision Project 1
[Jinbin Bai]

[171860607]
[jinbin5bai@gmail.com]

Part 1: Image filtering
[insert visualization of Gaussian kernel from
proj1.ipynb here]

[Describe your implementation of
my_conv2d_numpy() in words. Make sure to
discuss padding, and the operations used
between the filter and image.]

Gaussian_kernel_1D

Gaussian_kernel_2D

First, zero padding the image in four directions with half length or
width of the filter to make sure that the size of filtered image is the
same as the original image. Second, using a three-layer loop for
every channel and convolutional block to convolve with the filter (
using np.sum and np.multiply function). The code is as follows.

def my_conv2d_numpy(image: np.ndarray, filter: np.ndarray) -> np.ndarray:
m, n, c = image.shape
k, j = filter.shape
padding_image = np.pad(image, ((k // 2, k // 2), (j // 2, j // 2)), 'constant’)
filtered_image = np.zeros((m, n, c))
for C in range(c):

for x in range(m):
for y in range(n):

conv_block = padding_image[x:x + k, y:y + j, C]
filtered_image[x, y, C] = np.sum(np.multiply(conv_block, filter))

return filtered_image

Part 1: Image filtering
Identity filter

[insert the results from proj1.ipynb using
1b_cat.bmp with the identity filter here]

Small blur with a box filter

[insert the results from proj1.ipynb using
1b_cat.bmp with the box filter here]

Identity filter
box filter

Part 1: Image filtering
Sobel filter

[insert the results from proj1.ipynb using
1b_cat.bmp with the Sobel filter here]

Discrete Laplacian filter

[insert the results from proj1.ipynb using
1b_cat.bmp with the discrete Laplacian filter
here]

sobel filter
Discrete laplacian filter

Part 1: Hybrid images
[Describe the three main steps of
create_hybrid_image() here. Explain how to
ensure the output values are within the
appropriate range for matplotlib visualizations.]

Cat + Dog

[insert your hybrid image here]

Cutoff frequency: [5]

First, convolve the first image with the low-pass filter to obtain its
low frequency content. Second, subtract the second image with the
convolution of itself and the low-pass filter to obtain its high
frequency content. Third, add the first image’s low frequency and
the second image’s high frequency content to obtain the hybrid
image. Finally, use np.clip function to make sure the pixel values of
the hybrid image are between 0 and 1. The code is as follows.

low_frequencies = my_conv2d_numpy(image1, filter)
high_frequencies = image2 - my_conv2d_numpy(image2, filter)
hybrid_image = low_frequencies + high_frequencies
hybrid_image = np.clip(hybrid_image, 0.0, 1.0)

Part 1: Hybrid images
Motorcycle + Bicycle

[insert your hybrid image here]

Cutoff frequency: [7]

Plane + Bird

[insert your hybrid image here]

Cutoff frequency: [9]

Part 1: Hybrid images
Einstein + Marilyn

[insert your hybrid image here]

Cutoff frequency: [3]

Submarine + Fish

[insert your hybrid image here]

Cutoff frequency: [5]

Part 2: Hybrid images with PyTorch
Cat + Dog

[insert your hybrid image here]

Motorcycle + Bicycle

[insert your hybrid image here]

Part 2: Hybrid images with PyTorch
Plane + Bird

[insert your hybrid image here]

Einstein + Marilyn

[insert your hybrid image here]

Part 2: Hybrid images with PyTorch
Submarine + Fish

[insert your hybrid image here]

Part 1 vs. Part 2

[Compare the run-times of Parts 1 and 2 here,
as calculated in proj1.ipynb. Which method is
faster?]

Part 1: 9.346 seconds
Part 2: 0.110 seconds

So part 2 with PyTorch is faster.

Part 3
[Consider a 1-channel 5x5 image and a 3x3
filter. What are the output dimensions of a
convolution with the following parameters?
Stride = 1, padding = 0?
Stride = 2, padding = 0?
Stride = 1, padding = 1?
Stride = 2, padding = 1?]

[What are the input & output dimensions of the
convolutions of the dog image and a 3x3 filter
with the following parameters:
Stride = 1, padding = 0
Stride = 2, padding = 0
Stride = 1, padding = 1
Stride = 2, padding = 1?]

1-channel 3x3
1-channel 2x2
1-channel 5x5
1-channel 3x3

Input: (3,361,410) Output: (1,359,408)
Input: (3,361,410) Output: (1,180,204)
Input: (3,361,410) Output: (1,361,410)
Input: (3,361,410) Output: (1,181,205)

Part 3
[How many filters did we apply to the dog
image?]

[Why do the output dimensions adhere to the
equations given in the instructions handout?]

12 Because it can be regarded as a kxk square move on a hxw grid
with stride s, and padding parameter p can be regarded part of the
grid. So the new grid will be (h+2p)*(w+2p). And in every direction,
the num of steps that kxk square can move is (h+2p-(k-s))/s and (w-
k+2p)/s +1, which is equal to (h-k+2p)/s +1 and (w-k+2p)/s +1. And
this is the output dimension.

Part 3
[What is the intuition behind this equation?]

Because it can be regarded as a kxk square move on a hxw grid
with stride s, and padding parameter p can be regarded part of the
grid. So the new grid will be (h+2p)*(w+2p). And in every direction,
the num of steps that kxk square can move is (h+2p-(k-s))/s and (w-
k+2p)/s +1, which is equal to (h-k+2p)/s +1 and (w-k+2p)/s +1. And
this is the output dimension.

Part 3
[insert visualization 0 here] [insert visualization 1 here]

np.clip(feature_map+0,0,1) Feature_map np.clip(feature_map+0,0,1) Feature_map

Part 3
[insert visualization 2 here] [insert visualization 3 here]

np.clip(feature_map+0.5,0,1) Feature_map np.clip(feature_map+0.5,0,1) Feature_map

Conclusion
[How does varying the cutoff frequency value or swapping images within a pair
influences the resulting hybrid image?]

Increase the cutoff frequency value will keep less high frequency
information of the first image to make it more blur and more high
frequency information of the second image. As a result, the hybrid
image will look more like the second image which keeps its high
frequency information.

Decrease the cutoff frequency value will result to the contrast effect.

Swap two images will change the real objects that low frequency
information and high frequency information show, and that will make
the hybrid image more like the other object.

